
Modeling Position Specificity in Sequence Kernels by Fuzzy Equivalence Relations

Ulrich Bodenhofer, Karin Schwarzbauer, Mihaela Ionescu, and Sepp Hochreiter

Institute of Bioinformatics, Johannes Kepler University Linz, 4040 Linz, Austria
Email: {bodenhofer,schwarzbauer,ionescu,hochreit}@bioinf.jku.at

Abstract— This paper demonstrates that several known sequence
kernels can be expressed in a unified framework in which the position
specificity is modeled by fuzzy equivalence relations. In addition to
this interpretation, we address the practical issues of positive semi-
definiteness, computational complexity, and the extraction of inter-
pretable features from the final support vector machine classifier.

Keywords— fuzzy equivalence relation, kernel, sequence classi-
fication, support vector machines.

1 Introduction

The classification of biological sequences — in particular,
nucleotide sequences (DNA and RNA) and amino acid se-
quences (proteins) — is one of the fundamental tasks in com-
putational biology [1]. In the early days of computational bi-
ology, sequence statistics were employed. These approaches
were later improved by Hidden Markov Models (HMM) and
Artificial Neural Networks (ANN). In the last decade, Sup-
port Vector Machines (SVM) have become increasingly pop-
ular for sequence classification [2]. In many tasks — in com-
putational biology, but also in many other domains — SVMs
have outperformed all competing methods. It is justified to
state that SVMs are nowadays widely considered the most
powerful class of classification methods.1 SVMs have been
applied successfully in a wide spectrum of sequence classifi-
cation tasks, ranging from promoter and splice site detection
(both on DNA data) [3, 4, 5] to protein fold and secondary
structure prediction (both on amino acid sequences) [6, 7, 8].

SVM classifiers, in their simplest form, are nothing else but
linear classifiers. What distinguishes SVMs from other lin-
ear classifiers like perceptrons or logistic regressors is the fact
that SVMs determine the classification function by maximiz-
ing the margin between the classes — a principle that is known
to be optimal in terms of bounds on the generalization error
[9, 10]. Since linear SVMs use input vectors only to compute
scalar products, SVMs facilitate the so-called kernel trick, i.e.
the replacement of the scalar products by a kernel, i.e. a non-
linear two-place function that is positive semi-definite. The
use of kernels enables support vector machines to be applica-
ble to almost any kind of data, including raw sequence data,
signals, images, or graphs — only an appropriate kernel is
needed. It is not surprising, therefore, that the design of ap-
propriate sequence kernels is one of the central research topics
in sequence classification with SVMs. Most of these sequence
kernels are based on comparing sub-sequences and do not take
the positions of these occurrences into account. In many ap-
plications, however, the occurrence of a specific sub-sequence
is only indicative if it is at a specific position or region.

1although one has to admit that there are applications and circum-
stances/requirements under which other methods may be preferable

This paper repeats established sequence kernels that are
based on occurrences of specific patterns along with some
position-specific variants. We demonstrate that these kernels
can be expressed in a unified framework in which the po-
sition specificity is modeled by fuzzy equivalence relations.
This framework, on the one hand, allows for an interpreta-
tion of existing position-specific sequence kernels from the
viewpoint of fuzzy equivalence relations. On the other hand,
and more importantly from the practical viewpoint, this frame-
work gives rise to new position-specific sequence kernels by
allowing to use fuzzy equivalence relations that have not been
considered for modeling position specificity previously.

2 Support vector classification
Suppose that we have to do binary classification of samples
from a given arbitrary non-empty set X . The two classes are
denoted with +1 (positive class) and −1 (negative class). For
a given training set

{(xi,yi) | 1≤ i≤ l}

with xi ∈ X and yi ∈ {−1,+1} for all i = 1, . . . , l, the sup-
port vector machine classifier is represented as the following
discriminant function:

f (x) = b+
l

∑
i=1

αi · yi · k(x,xi) (1)

In this formula, b is a real value, αi are non-negative factors,
and k(., .) is the so-called kernel, that is, a symmetric X ×X →
R mapping fulfilling positive semi-definitenes, i.e.

n

∑
i=1

n

∑
j=1

zi · z j · k(xi,x j)≥ 0 (2)

for all n ∈ N, all (z1, . . . ,zn) ∈ R
n, and all (x1, . . .xn) ∈ X n.

With the notations z = (z1, . . . ,zn)T and K = (k(xi,x j))
j=1,...,n
i=1,...,n ,

Eq. (2) can be written as zT Kz≥ 0. Hence, the positive semi-
definiteness of k corresponds to the positive semi-definiteness
of any kernel matrix K.

The factors α1, . . . ,αn are the Lagrange multipliers of a con-
vex quadratic optimization problem arising from margin max-
imization. For details, the reader is referred to introductory
tutorials [11, 12] and standard SVM literature [9, 10, 13, 14].
We only note shortly that samples contributing to the final
classifier, obviously those xi for which αi > 0, are called sup-
port vectors.

The positive semi-definiteness of the kernel k serves for two
purposes. First, it ensures that the SVM optimization prob-
lem is a convex quadratic one, which ensures the existence

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1376

of a global solution that can be determined efficiently. More
importantly, by the famous Mercer theorem [15], it guaran-
tees that there exists a Hilbert space (H ,〈., .〉) and a mapping
ϕ : X →H such that the representation

k(x,y) = 〈ϕ(x),ϕ(y)〉 (3)

holds for all x,y ∈ X . This means that the kernel k can be
understood as a scalar product in a feature space H .

3 An overview of sequence kernels

In this paper, we restrict ourselves to sequence kernels that are
based on the occurrence of specific patterns. Assume in the
following that we have a certain finite alphabet A and that X
is a set of finite strings over the alphabet A . Further assume
that M is a finite set of patterns. A pattern can either be a
string over A itself (i.e. an exact pattern) or contain wildcards,
i.e. positions that match to an arbitrary symbol or a subset of
symbols from the alphabet A . We consider sequence kernels
that can be expressed as

k(x,y) = ∑
m∈M

N(m,x) ·N(m,y), (4)

where N(m,x) denotes the number of occurrences/matches of
pattern m in string x. It is obvious that, according to the repre-
sentation (3), such a kernel is nothing else but a scalar product
in an |M |-dimensional real feature space, where the feature
mapping ϕ is explicitly given as

ϕ(x) = (N(m,x))m∈M . (5)

In order to accommodate different matching criteria used in
existing sequence kernels, let us express N(m,x) as

N(m,x) =
length(x)

∑
p=1

1(m,x, p), (6)

where 1(m,x, p) is a kernel-specific indicator function whose
value is 1 if pattern m matches string x at position p and 0 if
not. So, in the framework presented here, a sequence kernels
is basically given by its pattern set M and its match indicator
function 1. This representation accommodates the following
well-known sequence kernels:

Spectrum kernel [6]: M = AK , i.e. the set of patterns is the
set of all K-length strings; the indicator function is given
as2

1(m,x, p) =


1 if p+K−1≤ length(x) and

m = x[p . . . p+K−1],
0 otherwise.

In other words, the spectrum kernel maps each of the two
sequences to the numbers of occurrences of all strings of
length K and computes the scalar product of these two
feature vectors.

2For a given string x, we define x[r] to be the r-th character in x
and x[r . . .q] to be the substring that starts with the r-th and ends with
the q-th position.

Mismatch kernel [7]: this kernel is analogous to the spec-
trum kernel with the exception that matches are con-
sidered up to a maximal number of M mismatches, i.e.
M = AK and

1(m,x, p) =


1 if p+K−1≤ length(x) and
|{1≤ r ≤ K | m[r] �= x[p+ r−1]}| ≤M,

0 otherwise.

Motif kernel [16]: M is a set of predefined patterns known
or assumed to be related to the given classification task;
the indicator mapping 1 is given as follows:3

1(m,x, p)=


1 if p+ length(m)−1≤ length(x) and

m[r] = x[p+ r−1] for all 1≤ r ≤ length(m)
such that m[r] �= “∗”

0 otherwise

Beside these three prominent kernels, also some others
comply with the representation (4), e.g. spatial sample ker-
nels [8].

The class of kernels (4) facilitates easy feature extraction,
which is not surprising given the fact that the feature mapping
ϕ is known explicitly. Suppose we are given a support vector
machine with Lagrange multipliers α1, . . . ,αl and an offset b.
Then we can make the following rearrangements:

f (x) = b+
l

∑
i=1

αi · yi · k(x,xi)

= b+
l

∑
i=1

αi · yi · ∑
m∈M

N(m,x) ·N(m,xi)

= b+ ∑
m∈M

N(m,x) ·
l

∑
i=1

αi · yi ·N(m,xi)︸ ︷︷ ︸
=w(m)

(7)

So we obtain w(m) as the linear scaling factor with which ev-
ery occurance/match of m in the sequence x is scored. Obvi-
ously, the higher the absolute value w(m), the more important
the pattern m is for the final classification. If w(m) is positive,
the pattern m is indicative for the positive class and, if w(m) is
negative, m is indicative for the negative class.

Note that the representation (7) is not only beneficial for
feature extraction, i.e. for determining which patterns are in-
dicative for the classification tasks. If the total number of
patterns actually occurring in the training set is not exces-
sively large, the explicit representation (7) also has strong ad-
vantages in terms of computational complexity: the weights
w(m) can be stored in a simple hash table indexed by the
patterns. For a new sample x, it is then only necessary to
sum up the weights for all occurrences of all patterns in x.
For the spectrum kernel, for instance, this means adding up
length(x)−K + 1 numbers, whereas the direct implementa-
tion of the general SVM (1) requires the computation of all
k(x,xi) for which αi > 0 and, therefore, much more computa-
tional effort.

3We restrict to fixed-length motifs with only regular characters
and the wildcard “∗” that matches all single characters, although the
generalization to more sophisticated patterns, e.g. by regular expres-
sions, is straightforward.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1377

4 Fuzzy position preference
The position-independent kernels presented in Section 3 have
been used successfully in protein classification. Many protein
classification tasks are concerned with inferring the structure
and/or function of proteins from their amino acid sequences.
Structure and function of proteins are largely determined by
shorter sub-sequences (patterns/motifs), mostly irrespective of
their exact position in the sequence, so position specificity is
not an important issue.

When analyzing DNA or RNA nucleotide sequences, the
situation is quite different. There is a rather small alphabet
(four nucleic acids instead of twenty amino acids), so some
patterns (in particular, shorter ones) are less indicative as they
may occur by chance. The position where a pattern occurs, for
example, relative to the start or end of a gene, plays a much
bigger role. Therefore, there is a strong need for position-
specific sequence classification.

We now want to illustrate how position specificity can be
integrated into the class of kernels introduced in the previous
section. So let us assume that all sequences we consider have
the same length L, i.e. X = AL, and are aligned in a way mean-
ingful for the given classification task.

The simplest way to include position dependence is to con-
sider each pattern at each position completely independent of
the other occurrences at other positions (similar to the philos-
ophy behind the weighted degree kernel [3]). This means that,
instead of mapping a sequence to the total numbers of occur-
rences of all patterns (cf. (5)), each pattern induces L features,
one for each position. The explicit feature mapping can be
formulated as follows:

ϕ(x) =
(
(1(m,x,1), . . . ,1(m,x,L))︸ ︷︷ ︸

binary list of occurrences of pattern m

)
m∈M (8)

Then the corresponding position-specific kernel is given as
follows:

k̄(x,y) = ∑
m∈M

L

∑
p=1

1(m,x, p) ·1(m,y, p) (9)

So this kernel basically counts the number of positions where
the same pattern matches both sequences x and y. It is clear
that the number of features (i.e. the dimension of the feature
space H) grows by a factor of L compared to the position-
independent kernel (4) — potentially increasing the risk of
overfitting. Moreover, this approach is not ideally suited for
tasks in which patterns are indicative if they appear in certain
regions (but not necessarily at exact positions).

The oligo kernel [5] solves this challenge by replacing the
binary indicators in the feature mapping (8) by the sum of
proximity functions around the occurrences of the pattern,
with Gaussian bell functions being the standard choice. We
leave this variant aside for a moment and concentrate on a
different approach in line with the shifted weighted degree
(SWD) kernel [4]. As in the kernel k̄, a pattern m occurring
at the same position in both sequences contributes 1 to the
sum, but also an occurrence of a pattern m at position p in
the sequence x and an occurrence of the same pattern m at
position q in the sequence y may contribute a non-zero value
to the sum. This is solved by a two-place weighting function

E : {1, . . . ,L}2→ [0,1] which corresponds to the closeness of
positions p and q. The farer p and q are apart, the lower the
value E(p,q) should be. If p = q, i.e. if the positions coincide
exactly, E(p,q) = 1 holds. So we may generalize the kernel k̄
in the following way:

k̃(x,y) = ∑
m∈M

L

∑
p=1

L

∑
q=1

1(m,x, p) ·E(p,q) ·1(m,y,q) (10)

If we leave some constant factors and the SWD kernel’s option
to define importance factors for each position aside, the posi-
tion preference weights used by the SWD kernel essentially
come down to

ESWD(p,q) = 2−|p−q|.

It is easy to see that the kernel k̄ given in (9) is a special
case of k̃ with the position weighting function

E=(p,q) =

{
1 if p = q,

0 otherwise,

i.e. the ordinary equality relation, and the position-
independent variant defined in (4) is also a special case of
(10) with the trivial position-independent weighting function
E1(p,q) = 1 (for all p,q ∈ {1, . . . ,L}).

Since the range of the weighting function E is the unit in-
terval and since it is intended to be a model of the close-
ness of the two positions, it is immediate to ask the question
whether fuzzy equivalence relations [17, 18] would be rea-
sonable choices for E. As usual, a mapping E : X 2 → [0,1]
is called fuzzy equivalence relation with respect to a given
triangular norm T if it has the following properties (for all
x,y,z ∈ X):

(i) Reflexivity: E(x,x) = 1

(ii) Symmetry: E(x,y) = E(y,x)

(iii) T -transitivity: T (E(x,y),E(y,z))≤ E(x,z)

It is trivial that the two special cases E= and E1 highlighted
above are fuzzy equivalence relations, no matter which trian-
gular norm (t-norm) we consider.

It is also straightforward to prove that ESWD is a fuzzy
equivalence relation with respect to the product t-norm
TP(x,y) = x · y. This can be proved directly, but it is essen-
tially a consequence of the well-known correspondence be-
tween pseudo-metrics and fuzzy equivalence relations with
respect to continuous Archimedean t-norms [19]. As further
consequences of this result, we can deduce some more ex-
amples (generally for x,y ∈ R, containing the special case of
natural numbers 1, . . . ,L):

• Elin,σ(x,y) = max(1 − 1
σ |x − y|,0) is a fuzzy equiva-

lence relation with respect to the Łukasiewicz t-norm
TL(x,y) = max(x+ y−1,0).

• Eexp,σ(x,y) = exp(−|x−y|
σ) is a fuzzy equivalence relation

with respect to the product t-norm TP.

• EGauss,σ(x,y) = exp(− (x−y)2

σ2) is a fuzzy equivalence rela-
tion with respect to the t-norm

T (x,y) = exp
(
− (
√
− lnx+

√
− lny)2),

which is nothing else but the Aczél-Alsina t-norm with
parameter λ = 1

2 [20].

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1378

The question arises which choices of E are feasible. In prin-
ciple, every choice for which E(p,q) is a non-increasing trans-
formation of |p−q| seems reasonable, and all examples men-
tioned above are of that kind.4 However, there is also a tech-
nical requirement that should not be forgotten: the resulting
function k̃ must be positive semi-definite. In order to deduce
meaningful requirements on the fuzzy equivalence relation E,
let us make a simple reformulation of k̃. It is trivial that the
two inner sums are just a vector-matrix-vector product

L

∑
p=1

L

∑
q=1

1(m,x, p) ·E(p,q) ·1(m,y,q) = ϕm(x)T ·E ·ϕm(y),

with

ϕm(x) =
(
1(m,x,1), . . . ,1(m,x,L)

)T
,

ϕm(y) =
(
1(m,y,1), . . . ,1(m,y,L)

)T
,

E =

 E(1,1) · · · E(1,L)
...

. . .
...

E(L,1) · · · E(L,L)

 .

Hence, we can rewrite k̃ as

k̃(x,y) = ∑
m∈M

ϕm(x)T ·E ·ϕm(y)︸ ︷︷ ︸
=k̃m(x,y)

.

The sum of kernels is again a kernel [21]. So if we can guar-
antee that each k̃m is a kernel, k̃ is guaranteed to be a kernel.
It is clear that, if the matrix E is positive semi-definite, k̃m
is a scalar product, hence a kernel. Then the positive semi-
definiteness of E, i.e. that E can be understood as a kernel
itself, is a sufficient criterion for E to be positive semi-definite
— and finally for k̃ to be a kernel.

For the first two examples above, the situation is clear: E=
induces the identity matrices, E1 induces matrices containing
only 1’s; both classes of matrices are trivially positive semi-
definite. For non-trivial situations, fortunately, several results
are known as well:

• Every fuzzy equivalence relation with respect to the
minimum t-norm TM(x,y) = min(x,y) is positive semi-
definite [22].

• Eexp,σ and EGauss,σ are long known to be positive semi-
definite [23], where the latter is one of the most used ker-
nels — the RBF kernel.

• Elin,σ has recently been proved to be positive semi-
definite [24].

• ESWD is also positive semi-definite, as obviously every
matrix E induced by ESWD is diagonally dominant.

So we can conclude that the three choices Eexp,σ, EGauss,σ,
Elin,σ and ESWD are reasonable and technically feasible. Fur-
ther note that the former three choices have in common that
the resulting kernels tend to the position-independent variant
(4) as σ goes to infinity, and the resulting kernels tend to the
most position-specific variant (9) as σ→ 0. So the parameter

4More generally, we could also apply a transformation to the po-
sitions first.

σ allows for adjusting the degree of position specificity in a
continuous manner.

We further note that also the oligo kernel [5] can be ac-
commodated in the framework introduced above. This ker-
nel uses an explicit feature representation for each pattern that
convolves the occurrences with Gaussian neighborhood (for
some a priori chosen σ). So we can integrate the oligo kernel
into the above framework with

Eoligo,σ = EGauss,σ ·EGauss,σ.

So, from the computational point of view, everything said here
is also valid for the oligo kernel. However, since entries of
the matrix Eoligo,σ can exceed the unit interval, this distance
weighting matrix cannot be interpreted as a fuzzy equivalence
relation.

5 Feature extraction and computational issues
There is no doubt that the position-specific variant introduced
in the previous section is more complicated than the position-
independent variant presented in Section 3. The question
arises whether the position-specific framework also allows for
simple feature extraction and computational efficiency like the
position-independent variant. Fortunately, this is the case. The
basis of this result is the following rearrangement of the SVM
discriminant function (analogous to Section 3):

f (x) = b+
l

∑
i=1

αi · yi · k̃(x,xi)

= b+
l

∑
i=1

αi · yi · ∑
m∈M

L

∑
p=1

L

∑
q=1

1(m,x, p) ·E(p,q) ·1(m,xi,q)

= b+ ∑
m∈M

L

∑
p=1

1(m,x, p) ·
l

∑
i=1

L

∑
q=1

1(m,xi,q) ·αi · yi ·E(p,q)︸ ︷︷ ︸
=w̃(m,p)

A value w̃(m, p) can be interpreted as the weight to which
an occurrence of pattern m at position p contributes to the fi-
nal result. Analogously to Section 3, w̃(m, p) > 0 means that
an occurrence of pattern m at position p is indicative for the
positive class, whereas w̃(m, p) < 0 tells us that an occurrence
of pattern m at position p is indicative for the negative class.
The absolute value of w̃(m, p) corresponds to the strength of
this influence.

It is worth to point out that the way the weights w̃(m, p)
are computed has a very intuitive interpretation too. Suppose
that pattern m occurs at position q in a support vector xi. Ob-
viously, if we consider p a free variable, E(p,q) is the prox-
imity (equivalence class) of position q. In case E = Elin,σ is
used, it is nothing else but a triangle with width σ; in the case
E = Eexp,σ, it is a Gaussian bell. So the term αi · yi ·E(p,q) is
nothing else but this proximity scaled by the Lagrange multi-
plier αi and the sign yi. Thus, the list (w̃(m, p))p=1,...,L is the
superimposition of proximities of all occurrences of pattern m
in the training set scaled by corresponding Lagrange multipli-
ers and signs/classes.

The list (w̃(m, p))p=1,...,L can be plotted as a graph over
the sequence showing the influence of pattern m at each po-
sition, indicating in which regions of the sequence the pat-
tern is indicative for either class or not indicative at all. Thus,

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1379

the framework presented here allows for the same simple fea-
ture extraction as the position-independent variant. For other
methods to extract features from SVM-based sequence classi-
fiers, see [25, 26].

Moreover, it is obvious from the reformulation above that
the discriminant function f (x) can be evaluated in the same
way as the position-independent variant — by adding up
weights over all patterns occurring in the sequence x. So there
is no difference in computational complexity between the
position-specific and the position-independent variant. How-
ever, we have to store L times as many weights. This may be
an obstacle if the number of patterns occurring in the training
set and the sequence length L are both high.

For the position-specific spectrum kernel, for instance, the
situation is very convenient. A sequence contains exactly
L−K + 1 sub-strings. Thus, the computation of f (x) can be
done by summing up L−K+2 values (again assuming that the
lists of weights are stored in a convenient hash table). Obvi-
ously, the choice of K is of little influence on this complexity,
which is is not true if we consider memory requirements. For
low K’s, the memory needed to store the weights grows expo-
nentially (as |M |= AK), but the total number of patterns that
need to be considered is bounded above by the total number
of patterns occurring in all support vectors.

All said above is valid for the spectrum kernel only. The
mismatch kernel, for instance, is a much more difficult mat-
ter, as every sub-string of length K can match several patterns
(where this number grows exponentially with M). Thus, the
total number of patterns to be considered can be much higher
and, more importantly, the number of patterns that need to be
taken into account for computing f (x) according to the above
principle is much higher. Moreover, the extraction of features
in the above manner is possible in principle, but impeded by
the fact that the sets of sub-strings matching two different pat-
terns may have large overlaps.

6 A DNA classification example
In this section, we demonstrate the concept introduced above
by means of a case study. We consider the task of characteriz-
ing long nucleosome-free DNA segments.

Nucleosomes are a DNA packing mechanism in eukary-
otic genomes. A nucleosome basically consists of a protein
complex (a histone octamer) around which approximately 147
DNA base pairs (bp) are wrapped in 1 2

3 turns. Nonchalantly
speaking, the histone complex acts as a reel around which
DNA is wrapped. The DNA segment around the histone
is mostly inaccessible for interactions with other molecules,
most importantly, RNA polymerase. That is why the positions
of nucleosomes and possible change of those positions play
an essential role in transcription regulation. Therefore, it is of
essential interest for the systems biology of eukaryotic cells
which mechanisms determine the positioning and reposition-
ing of nucleosomes. An interesting sub-topic is whether there
are specific feature of the DNA that favor or hamper the posi-
tioning of nucleosomes.

For the yeast sub-species Saccharomyces cerevisiae, a com-
monly used model organism, data are available about where
nucleosomes are located [27]. Instead of trying to find out
which DNA features favor nucleosomes [28, 29], we tried
to elicit DNA features that hamper the positioning of nucle-

0 20 40 60 80
�0.2

�0.1

0.0

0.1

0.2
AAAA

0 20 40 60 80
�0.2

�0.1

0.0

0.1

0.2
TTTT

0 20 40 60 80
�0.2

�0.1

0.0

0.1

0.2
CTTT

0 20 40 60 80
�0.2

�0.1

0.0

0.1

0.2
CGTC

Figure 1: Weight profiles for the four patterns “AAAA”,
“TTTT”, “CTTT” and “CGTC” (from top to bottom).

osomes. To this end, we selected a total number of 10226
nucleosome-free sub-sequences of 100 bp length which occur
before (on either strand) a well-positioned nucleosome (with
the end of the sequence aligned to the start of the nucleo-
some coming thereafter). This was done using the data pub-
lished along with [27]. These sequences were labeled as +1.
The data set was complemented by the same number of ran-
dom 100 bp long DNA fragments occurring in nucleosomes or
in between two nucleosomes that are less than 100 bp apart.
These sequences were labeled as −1.

Our investigations were carried out as follows. The choices
A = {“A”,“G”,“C”,“T”} and L = 100 were given by the data
set under consideration. We used the spectrum kernel, both
position-independent and position-specific, with different val-
ues for K ranging from 2 to 6. For the position-specific vari-
ant, we used E = Elin,σ with σ’s of 5, 10, and 20. We em-
ployed libSVM [30] to train standard soft margin SVMs. The
best cross validation accuracy of 79.2% was obtained for the
position-specific variant with K = 4 and σ = 10.

Let us have a closer look at the best setting K = 4. Obvi-
ously, we have |M | = 44 = 256 different patterns. Hence, in
order to realize the principle described in the previous section
we have to store at most 256 · 100 = 25,600 numbers, which
is easily manageable. Computing the discriminant function
f (x) for a new sequence x requires only to slide a window of
length K = 4 over the sequence and to sum up the correspond-
ing weights, hence only 98 additions are necessary, which is
negligible compared to directly applying Eq. (1).

Figure 1 shows four examples of such weight profiles
obtained for the given classification task. It is obvious
that “AAAA” is indicative for the positive class (longer
nucleosome-free positions), more or less regardless of the po-
sition. This is in line with the result of Peckham et al. [29]

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1380

who have found out that poly-A occurrences are indicative
for non-nucleosome sequence regions. One would expect the
same situation for the complementing pattern “TTTT”, but the
profile in Figure 1 shows that this pattern is indicative for the
positive class only in the first half of the sequence, whereas
it is not indicative for the last 45 bases before a nucleosome.
The pattern “CTTT” is not indicative for either class in the
first half of the sequence, it seems to occur frequently around
50 bases before a nucleosome, and it occurs with less-than-
random probability in the last 40 bases before a nucleosome
(note that the negative class is randomly sampled from nu-
cleosomes and shorter nucleosome-free fragments). The last
graph shows that pattern “CGTC” seems to be of no signif-
icance at all. Although the biological interpretation of these
results is a more advanced topic, the examples demonstrate
how easily claims about the significance of specific patterns
can be deduced from the weight profiles.

7 Concluding remarks
In this paper, we have formulated a generalization of position-
specific sequence kernels by using fuzzy equivalence relations
for modeling position specificity. This is not only an inter-
esting link, but also gives rise to new kernels, e.g. the one
based on Elin,σ. We have obtained that these kernels facili-
tate an explicit representation which allows for computational
efficiency and easy feature extraction.

References

[1] R. Durbin, S. R. Eddy, A. Krogh, and G. Mitchison. Biolog-
ical Sequence Analysis: Probabilistic Models of Proteins and
Nucleic Acids. Cambridge University Press, 1998.

[2] B. Schölkopf, K. Tsuda, and J.-P. Vert, editors. Kernel Methods
in Computational Biology. MIT Press, Cambridge, MA, 2004.

[3] G. Rätsch and S. Sonnenburg. Accurate splice site detection for
Caenorhabditis elegans. In B. Schölkopf, K. Tsuda, and J.-P.
Vert, editors, Kernel Methods in Computational Biology, pages
277–298. MIT Press, Cambridge, MA, 2004.

[4] G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: recogni-
tion of alternatively spliced exons in C.elegans. Bioinformatics,
21(Suppl. 1):i369–i377, 2005.

[5] P. Meinicke, M. Tech, B. Morgenstern, and R. Merkl. Oligo
kernels for datamining on biological sequences: a case study
on prokaryotic translation initiation sites. BMC Bioinformatics,
5:169, 2004.

[6] C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: a
string kernel for SVM protein classification. In R. B. Altman,
A. K. Dunker, L. Hunter, K. Lauderdale, and T. E. D. Klein,
editors, Pacific Symposium on Biocomputing 2002, pages 566–
575. World Scientific, 2002.

[7] C. Leslie, E. Eskin, A. Cohen, J. Weston, and W. S. Noble.
Mismatch string kernels for discriminative protein classifica-
tion. Bioinformatics, 1(1):1–10, 2003.

[8] P. Kuksa, P.-H. Huang, and V. Pavlovic. A fast, large-scale
learning method for protein sequence classification. In 8th Int.
Workshop on Data Mining in Bioinformatics, pages 29–37, Las
Vegas, NV, 2008.

[9] C. Cortes and V. N. Vapnik. Support vector networks. Machine
Learning, 20:273–297, 1986.

[10] V. N. Vapnik. Statistical Learning Theory. Adaptive and Learn-
ing Systems. Wiley Interscience, 1998.

[11] C. J. M. Burges. A tutorial on support vector machines for pat-
tern recognition. Data Min. Knowl. Discov., 2:121–167, 1998.

[12] K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf.
An introduction to kernel-based learning algorithms. IEEE
Trans. Neural Networks, 12(2):181–201, 2001.

[13] N. Christianini and J. Shawe-Taylor. An Introduction to Support
Vector Machines and Other Kernel-based Learning Methods.
Cambridge University Press, 2000.

[14] B. Schölkopf and A. J. Smola. Learning with Kernels. Adaptive
Computation and Machine Learning. MIT Press, Cambridge,
MA, 2002.

[15] J. Mercer. Functions of positive and negative type and their
connection with the theory of integral equations. Philos. Trans.
Roy. Soc. London, A 209:415–446, 1909.

[16] A. Ben-Hur and D. Brutlag. Remote homology detection: a
motif based approach. Bioinformatics, 19:i26–i33, 2003.

[17] L. A. Zadeh. Similarity relations and fuzzy orderings. Inform.
Sci., 3:177–200, 1971.

[18] L. Valverde. On the structure of F-indistinguishability opera-
tors. Fuzzy Sets and Systems, 17(3):313–328, 1985.

[19] B. De Baets and R. Mesiar. Pseudo-metrics and T -
equivalences. J. Fuzzy Math., 5(2):471–481, 1997.

[20] E. P. Klement, R. Mesiar, and E. Pap. Triangular Norms, vol-
ume 8 of Trends in Logic. Kluwer Academic Publishers, Dor-
drecht, 2000.

[21] C. H. FitzGerald, C. A. Micchelli, and A. Pinkus. Functions
that preserve families of positive semidefinite matrices. Linear
Alg. Appl., 221:83–102, 1995.

[22] B. Moser. On the T -transitivity of kernels. Fuzzy Sets and
Systems, 157(1):1787–1796, 2006.

[23] C. A. Micchelli. Interpolation of scattered data: Distance ma-
trices and conditionally positive definite functions. Constr. Ap-
prox., 2:11–22, 1986.

[24] L. Belanche, J. L. Vázquez, and M. Vázquez. Distance-based
kernels for real-valued data. In C. Preisach, H. Burkhardt,
L. Schmidt-Thieme, and R. Decker, editors, Data Analysis,
Machine Learning and Applications, Studies in Classifica-
tion, Data Analysis, and Knowledge Organization, pages 3–10.
Springer, Berlin, 2008.

[25] T. Lingner and P. Meinicke. Remote homology detection based
on oligomer distances. Bioinformatics, 22(18):2224–2231,
2006.

[26] S. Sonnenburg, A. Zien, P. Philips, and G. Rätsch. POIMs: po-
sitional oligomer importance matrices—understanding support
vector machine-based signal detectors. Bioinformatics, 24:i6–
i14, 2008.

[27] W. Lee, D. Tillo, N. Bray, R. H. Morse, R. W. Davis, T. R.
Hughes, and C. Nislow. A high-resolution atlas of nucleo-
some occupancy in yeast. Nature Genetics, 39(10):1235–1244,
September 2007.

[28] E. Segal, Y. Fondufe-Mittendorf, L. Chen, A. C. Thåström,
Y. Field, I. K. Moore, J.-P. Z. Wang, and J. Widom. A genomic
code for nucleosome positioning. Nature, 442(17):1235–1244,
August 2006.

[29] H. E. Peckham, R. E. Thurman, Y. Fu, J. A. Stamatoyannopou-
los, W. S. Noble, K. Struhl, and Z. Weng. Nucleosome posi-
tioning signals in genomic DNA. Genome Res., 17:1170–1177,
2007.

[30] C.-C. Chang and C.-J. Lin. LIBSVM: a library for support vec-
tor machines, 2001. Software available at http://www.csie.
ntu.edu.tw/~cjlin/libsvm.

ISBN: 978-989-95079-6-8

IFSA-EUSFLAT 2009

1381

