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Understanding the relationship between protein se-
quence and structure is one of the great challenges in
biology. In the case of the ubiquitous coiled-coil motif,
structure and occurrence have been described in exten-
sive detail, but there is a lack of insight into the rules
that govern oligomerization, i.e. how many �-helices
form a given coiled coil. To shed new light on the for-
mation of two- and three-stranded coiled coils, we de-
veloped a machine learning approach to identify rules in
the form of weighted amino acid patterns. These rules
form the basis of our classification tool, PrOCoil, which
also visualizes the contribution of each individual amino
acid to the overall oligomeric tendency of a given coiled-
coil sequence. We discovered that sequence positions
previously thought irrelevant to direct coiled-coil interaction
have an undeniable impact on stoichiometry. Our rules also
demystify the oligomerization behavior of the yeast tran-
scription factor GCN4, which can now be described as a
hybrid—part dimer and part trimer—with both theoretical
and experimental justification. Molecular & Cellular Pro-
teomics 10: 10.1074/mcp.M110.004994, 1–9, 2011.

Fifty-nine years ago, in 1952, L. Pauling (1) and F. H. C.
Crick (2) first described the structure of the �-helical coiled
coil. Since then it has become a prototypical textbook exam-
ple of a structural motif, being commonly described as con-
sisting of between two and seven �-helices. Almost 6% of the
proteins in the Protein Data Bank (PDB)1 contain coiled-coil
regions (3), of which more than 90% show dimeric or trimeric
interactions. Because of their ability to oligomerize, coiled

coils perform, either on their own or as part of larger protein
complexes, a variety of important cellular functions (4). Their
ubiquity and the stable interactions of their helices make
coiled coils ideal building blocks for designing novel proteins.
Furthermore, coiled-coil interactions have recently attracted
attention as promising drug targets (5). Their use in successful
inhibition of membrane fusion proteins of viruses such as HIV
(6) and avian influenza (7) supports the concept of rational
drug design based on coiled-coil proteins (8).

Today, a plethora of information about coiled coils is avail-
able, including their prevalence, sequence characteristics,
and structures. They have in common a periodically recurrent
sequence called a heptad repeat of the form (abcdefg)n. Usu-
ally, the positions a and d in these repeats are occupied by
hydrophobic amino acids located at the hydrophobic core
crucial for tertiary structure, whereas positions e and g typi-
cally are charged residues (9). These obvious regularities and
the clear and simple appearance of coiled-coil structures
have made possible a large number of computational ap-
proaches to their analysis. These range from (i) simple se-
quence-based approaches using single (10) and pairwise res-
idue distributions (11, 12) to (ii) approaches based on hidden
Markov models without scanning windows (13), (iii) structure-
based approaches detecting knobs-into-holes packing in
helical bundles (14), and (iv) approaches based on matrices of
residue frequencies that aim to distinguish different oligo-
meric tendencies (15, 16). (For a detailed comparative analy-
sis of coiled-coil prediction methods see (17).)

Hence, one might expect our understanding of coiled coils
to be complete. Most remarkably, however, the hidden and
more complex rules for oligomeric formation, and thus the key
to biological function, are poorly understood. A first but crude
indicator of the oligomeric state of coiled coils may be their
intra- and extracellular prevalence, which clearly does not
provide any information about the sequence features that
govern oligomerization. Despite extensive experimental and
computational efforts such as mutation analysis, NMR, x-ray
crystallography, and statistics (18–22), our knowledge of
which oligomer a specific coiled coil forms has, until now,
been limited to describing the phenomenon on the basis of a
small number of protein samples. Now, as the amount of
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available postgenomic sequence data is growing rapidly, the
challenge is to explain coiled-coil oligomerization by extract-
ing an actual set of rules from this data.

Experimentalists have recently discovered the first complex
trimerization pattern by comparing trimeric coiled-coil se-
quences (23), and their latest results prove that it is in fact
context-dependent (24). However, experimental approaches
can never be exhaustive, making bioinformatics the method of
choice (18) for identifying oligomerization rules embedded in
the sequence data. To this end, we employ machine learning
methods that distinguish dimers from trimers with high accu-
racy. Simultaneously, we extract rules that characterize each
type of oligomer in the form of patterns to which we assign
weights. We designed a sequence profiling tool, PrOCoil, that
analyzes the patterns present in a given coiled-coil sequence
to determine and visualize the contribution of each amino acid
to the overall oligomer tendency using the rules in which it
participates. PrOCoil elucidates, for example, the hitherto
puzzling behavior of the yeast transcriptional activator GCN4,
which can, as a result of minimal mutations in its amino acid
sequence, switch from forming a dimer to forming a trimer
(see, e.g. (19, 23)). Despite the challenge this borderline rep-
resentative and its mutants pose when it comes to predicting
their oligomeric states, it is exactly this property that identified
GCN4 as the ideal test candidate to verify our findings both
computationally and experimentally. Based on our double
substitution analysis using SPOT synthesis (19) and a trigger-
sequence-based mutated sequence (23), dimer- and trimer-
forming GCN4 mutants were selected and examined using
the previously revealed rules. The stoichiometry of each
GCN4 mutant was analyzed and confirmed by biophysical
methods (see supporting information online and (24)).

EXPERIMENTAL PROCEDURES

Data Preparation—We scanned the whole PDB (25) for dimeric and
trimeric coiled-coil segments. Other oligomers were not considered in
this work because they account for less than 10% of the structurally
resolved coiled-coil structures. We used the program SOCKET (14)
with a packing cutoff of 7.0 Å to scan the PDB (25) for knobs-into-
holes packing between helices. The output was first parsed for di-
meric and trimeric sequences and then divided into parallel and
antiparallel samples. We refined our data set of parallel dimeric and
trimeric coiled coils by removing identical (sub-)sequences, as they
contribute no additional sequence information. Thus, we created a
database of 385 dimeric and 92 trimeric coiled-coil sequences with
heptad registers assigned by SOCKET.

We augmented the data set with coiled-coil sequences that were
not yet structurally resolved and thus not listed in the PDB. To this
end, we retrieved the complete amino acid chains containing coiled-
coil segments from the PDB entries and masked the areas SOCKET
had identified as coiled coils. Those chains that provided at least 40
unmasked amino acids were then used as inputs to Basic Local
Alignment Search Tool (BLAST) (26) searches in the NR database.
Subsequently, we removed BLAST output sequences that were less
than 85% identical to the unmasked regions of the query sequences.
Then we used the remaining sequences as input for the program
MARCOIL (13) to confirm that they contain coiled-coil segments and
to assign their heptad registers. Finally, only sequences that reached

or exceeded a coiled-coil probability of 85% according to MARCOIL
were selected and included in the data set. This resulted in a com-
bined PDB and approved BLAST pool of 2043 dimers and 791
trimers.

In contrast to hitherto published approaches to coiled-coil analysis,
we divided the PDB samples in our data set into clusters such that the
maximum sequence identity between any two sequences from two
different clusters was 60% (according to ungapped, heptad-specific
pairwise alignments). Subsequently, we created an augmented data
set by adding each sequence from the approved BLAST pool to the
cluster of the query sequence from which it originated. We thus
obtained two 60%-clustered data sets: one based exclusively on PDB
samples and one augmented by BLAST. We chose an identity thresh-
old of 60% because any lower level would have merged about half of
the data set into a single cluster. This is due to the fact that coiled
coils have a highly similar secondary structure and thus also have a
priori a high level of sequence similarity.

Heptad-Specific Single Amino Acid Frequencies—For the clus-
tered data set, each cluster was considered as a single coiled-coil
sequence. This was accomplished by performing an ungapped, hep-
tad-specific multiple alignment of all sequences in the cluster. Then,
a cluster sequence was represented by the relative frequencies of
amino acids at each of the aligned positions (analogous to the way
clusters are treated when computing BLOcks SUbstitution Matrix
(BLOSUM) matrices (27)). Finally, the overall single amino acid fre-
quencies were computed as the sums of relative amino acid frequen-
cies at all heptad positions in all clusters. The statistical significance
of each single amino acid position was determined by Fisher’s exact
test (28), comparing the numbers of occurrences of a given amino
acid at a given heptad position in trimers and dimers against the
occurrences of other residues in the same heptad position. The
overall numbers of occurrences of heptad positions in the sequences
of the 60%-clustered data set amount to around 210 in trimers and
around 800 in dimers. These sample sizes are large enough to have
sufficient statistical power to detect even small differences in amino
acid frequencies. Finally, we obtained nine single amino acid patterns
that were significant according to the Benjamini-Hochberg false dis-
covery rate (FDR) correction (29) with an FDR threshold of 0.05.

Statistical Significance of Amino Acid Pairs—In order to test
whether patterns of pairs of amino acids provide a gain of information
compared with single amino acid patterns, we considered all possible
pairings of amino acids at specific heptad positions with at most six
other residues in between. Again, we applied Fisher’s exact test, this
time comparing joint occurrences of two residues against occur-
rences of the first residue with other residues (again separately for
trimers and dimers). Here, the overall sample size is the number of
occurrences of the first single amino acid pattern. Extensive power
calculations showed that we need at least 60 occurrences of a single
amino acid pattern to detect statistical differences with sufficient
certainty. Of the 4360 pair patterns fulfilling this criterion in the 60%-
clustered data set, 130 pairs showed a p value of at most 0.05. After
applying Benjamini-Hochberg FDR correction and a stringent FDR
threshold of 0.05, two pair patterns remained significant. Thus, we
indeed observe a gain in information with high statistical significance.
Note, moreover, that we may have overlooked many potentially val-
uable pair patterns because the sample sizes were too small to detect
a difference with sufficient significance.

Support Vector Machines (SVMs) and the Coiled-coil Kernel—The
nontechnical reader may find these introductory tutorials (30–32) or
standard literature (33–35) helpful to become familiar with the topic
of support vector machines. We employed the well-established
SVM implementation LIBSVM (36). Suppose we wish to perform a
binary classification of samples xi (in our case amino acid se-
quences with heptad registers assigned). Each sample can belong
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either to the positive class with the label yi � 1 (trimers) or to the
negative class with the label yi � �1 (dimers). For a given training
set �� xi,yi��1 � i � l�, the discriminant function value of the
support vector machine for a sample x is given by

f�x� � b � �
i�1

l

�i � yi � k�x,xi�,

where b and �i are optimized according to the training data. The
two-place function k, referred to as kernel function, measures the
similarity of two samples. We use our novel coiled-coil kernel, which
can be written as

k�x,y� � �
p

N�p,x� � N�p,y�.

A pair pattern p consists of two amino acids and a fixed number of up
to m arbitrary amino acids in between. We indicate at which heptad
position the first amino acid must occur. The pattern S.If, for instance,
matches a coiled-coil sequence if a Ser occurs at an f position and an
Ile at the next a position (with an arbitrary amino acid at the g position
in between). For a given pattern p and a sequence x, N(p,x) denotes
the number of occurrences/matches of pattern p in sequence x. The
coiled-coil kernel calculates the number of coiled-coil patterns shared
by two sequences, taking multiple occurrences into account. It bears
some resemblance to the spatial sample kernel (37) and the kernel
described in (38). However, in contrast to (37), the coiled-coil kernel
has an additional position/heptad-specific property, and in contrast to
(38), it considers pairs of residues from the same chain and is not
restricted to a small set of pairs of positions. The kernel values were
normalized to correct for variations in sequence length (32):

k��x,y� �
�p N�p,x� � N�p,y�

��p N�p,x�2��p N�p,y�2

Model Selection—The validity of our model selection was verified
by nested cross-validation. In the outer cross-validation loop, the
whole data set was split into 10 parts with a maximum sequence
identity of 60% between parts. In each of 10 runs, the 10 parts were
grouped differently to form a training data set (nine parts) and an
unseen data set (one part). Model selection was performed by means
of a ninefold inner cross-validation on the training data set. The
resulting best model was then tested on the unseen data. The results
in supplemental Table S7 show that our model selection procedure
performs very well on independent test sets. Hence, we can safely
apply cross-validation-based model selection to the entire data set.
The best model in terms of accuracy obtained in this way was that
trained with the BLAST-augmented data set using the normalized
coiled-coil kernel with m � 7 and the SVM penalty parameter C � 8.
Following retraining with the complete data set (i.e. with no data
omitted), this became our PrOCoil model.

Pattern Extraction—Pattern extraction was performed by rearrang-
ing the discriminant function f(x) as described in (39) to obtain the
weights w(p) of the patterns p given a support vector machine:

f�x� � b �
1

��p N�p,x�2�
p

N�p,x� � �
i�1

l
�i � yi � N�p,xi�

��p N�p,xi�
2

� w�p�

Sequence Profiling—The discriminant function f(x) was reformu-
lated such that each position or amino acid i in the sequence x is
attributed to the weight si (i.e. the sum over half of the weight of all
patterns of which it is part) it contributes to the discriminant function.

The base line of the resulting sequence profiling plot is given by y �
�b/L.

f�x� � b � �
i�1

L

si � �
i�1

L �si � ��
b
L��

RESULTS

Pattern Identification by Statistical Analysis is Insufficient for
Predicting Oligomerization States—The first method we em-
ployed in search of oligomerization rules was a statistical
analysis of the frequency of each amino acid at each position
of the heptad register in dimers and trimers, in line with
SCORER, Woolfson and Alber’s first oligomerization predictor
(15). The relative frequency results for the 60%-clustered data
set are shown in supplemental Table S3 and supple-
mental Fig. S2. We calculated p values by Fisher’s exact test
(28) in order to identify those amino acids at specific heptad
positions whose comparatively higher frequencies in one olig-
omer than in the other were statistically significant. Correction
for the false discovery rate resulted in nine significant residues
at specific heptad positions according to the Benjamini-Hoch-
berg method (29) (see supplemental Table S3). Initially, it may
seem that there is a clear preference for Ile at both hydropho-
bic core positions of trimers, as previously described in the
literature (40). However, we identified a clear and significant
preference for the amino acid Ile only in a positions of the
hydrophobic cores of trimers. This �-branched amino acid
also frequently occupies the d positions in trimers, but false
discovery rate correction shows that the high prevalence in d
positions is, in fact, not statistically significant. Arg, Asn, and
Lys at a positions are the only amino acids in a hydrophobic
core position that have a statistically higher prevalence in
dimers. Interestingly, these residues in this particular heptad
position are tolerated almost exclusively in dimers. In trimers,
positions that usually form salt bridges show a comparatively
higher prevalence of the small, uncharged amino acid Gly at e
position. Additionally, Asn is more prevalent at this position in
trimers. In dimers, Glu in g position, but not in e position, is
statistically significant. In the literature (see, e.g. O’Shea et al.
(9)), e and g positions are usually attributed the same char-
acteristics. Our results, however, show that the amino acid
distributions at these heptad positions are, in fact, different.
For positions that do not participate in direct coiled-coil inter-
action, we found statistically significant amino acids only in
trimers, namely Ala at c, and Ser at f positions. In summary,
although there are obvious statistical differences in the occur-
rences of certain residues at certain heptad positions in
dimers and trimers, these differences are insufficient to dis-
tinguish dimers from trimers. Specific residues at certain po-
sitions occur relatively infrequently, giving these occurrences
a high specificity but low sensitivity, i.e. for the majority of
sequences we cannot predict the oligomerization state be-
cause there is a lack of reliable indicators. The sensitivity can
be improved by considering simultaneously multiple occur-
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rences of single amino acids, but even this is insufficient to
explain oligomerization. Hence, we shifted our focus to the
dependences between amino acids within and beyond a hep-
tad. We searched for a method that could draw on a maxi-
mum number of interactions and combine these into a net-
work of rules that would allow us to predict and examine
oligomerization. Support vector machines (SVMs) are ideally
suited to this task and have previously been used in a different
context to predict protein-protein interactions that are medi-
ated by the coiled-coil motif (38).

Support Vector Machines Provide a Sound Basis for Finding
Oligomerization Rules—In recent years, SVMs have become
established as a standard tool in machine learning, and their
popularity for biosequence classification has increased dra-
matically (41). SVMs provide mathematically sound classifica-
tions even if the data set is too small to achieve significant
results with probabilistic techniques. In fact, SVMs are the
method of choice both because they can be used to distin-
guish dimers from trimers and because, at the same time,
they also provide the rules on which their decisions are based
and which are so valuable for protein design purposes. In the
context of classifying biological sequences, SVMs require a
kernel that obtains two sequences as input and supplies a
scalar value as a measure for their similarity. Inspired by
earlier approaches that make use of pairwise residue co-
occurrences (11, 12, 16, 38), we developed a new kernel,
hereafter called coiled-coil kernel, that is tailored to classifying
coiled-coil proteins. We verified (see supplemental Section S3
and supplemental Tables S5 and S6) that this kernel does
indeed outperform significantly the currently most popular
sequence kernels (spectrum (42) and mismatch kernel (43)).
Using the coiled-coil kernel, an SVM generates rules by opti-
mizing the pattern weights such that the combined rules
achieve maximum discrimination between dimers and trimers.

Model Selection and Classification Results—To identify the
SVM classifier (i.e. model) with the optimum SVM and coiled-
coil kernel parameters, we had to assess which model
performs best on future (previously unseen) data. For this
purpose, we applied nested cross-validation according to
state-of-the-art standards.

Our classification results are noteworthy: In the model se-
lection procedure we were able to classify test (i.e. unknown)
sequences with 86.9% average accuracy (see supple-
mental Table S7 for more details), even though they had only
a maximum identity of 60% to any (known) coiled coil with
which the SVM was trained. This is especially remarkable
because the tests used all structurally resolved coiled-coil
sequences and not the limited number of individual samples
often used in experimental validation. Our calculations show
that training the SVM with the augmented data set enhanced
the classification. Using only structurally resolved PDB se-
quences in our test data sets ensured that this improvement
was not due to the optimization of an “artificial” data set.
Furthermore, our approach also ranks previously unknown

sequences very well, as shown by the ROC curve in Fig. 1.
The average area under the curve obtained from 10-fold
cross-validation on the 60%-clustered data set was 0.82 (see
also supplemental Table S8).

Finally, the best setting identified with 10-fold cross-valida-
tion was used to train an SVM model on the entire BLAST-
augmented data set, the result of which became our PrOCoil
model. Machine learning theory states that the performance
of the PrOCoil model on future data will be similar to the
results achieved by the above model selection procedure
(33, 44).

Supplemental Section S5 further illustrates that our ap-
proach indeed outperforms the state-of-the-art oligomeriza-
tion predictor MultiCoil (16).

Pattern Extraction and Sequence Profiling—A Network of
Interactions Determines Stoichiometry—Based on the rules
constructed by our coiled-coil kernel approach, amino acid
patterns were extracted from the augmented data set. These
patterns comprise pairs of amino acids at certain heptad
positions that are characteristic of each type of oligomer (see
Fig. 2 and supplemental Fig. S4). We then used this informa-
tion to implement a prediction and sequence profiling tool,
PrOCoil, that characterizes the overall oligomeric tendency of
a coiled-coil sequence by displaying each amino acid’s con-
tribution to the rules in which it participates in a specific
sequence. Fig. 3 depicts the sequence profiling plots of a
typical dimer (c-Jun, PDB entry 1jun) and a typical trimer
(hemagglutinin, PDB entry 1htm) using PrOCoil. The se-
quences show a clear overall dimeric and trimeric tendency
respectively. These tendencies are indicated by the areas
above and below the base line, which equate respectively to
the positive/trimeric contributions and the negative/dimeric
contributions of the patterns involved. Fig. 4A depicts the
same kind of plot for wildtype GCN4—a dimeric coiled-coil
protein renowned for its ability to adopt easily a different

FIG. 1. Average ROC curve of the PrOCoil model, obtained from
10-fold cross-validation on the 60%-clustered data set. The su-
perimposed error bars illustrate the deviations of the 10 ROC curves
from which the average (red curve) was computed.
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oligomerization state with very few mutations of its amino acid
sequence (19). The plot shows how this is possible—unlike
c-Jun and hemagglutinin, GCN4 does not display a clear
tendency toward one oligomeric state. It is impossible to
assess at first glance whether the area above or below the
base line is larger. As this protein combines both dimeric and
trimeric characteristics, it takes only a few selected mutations
to tip the scales in one direction or the other. GCN4 was thus
the ideal candidate to demonstrate that the PrOCoil model
can not only be used to provide excellent classification of
wild-type sequences, but can even be employed for mutation

analysis, given that a sufficiently large set of (similar) samples
is provided with which it can be trained.

Mutation Analysis of GCN4 Mutants Using PrOCoil—Solv-
ing the Puzzle—We chose two mutant GCN4 sequences from
our double substitution analysis (19) for which the oligomeric
state was assessed by analytical ultracentrifugation (see
supplemental Tables S1 and S2) and a sample which was
mutated using a trimerization motif (23). These mutants were
not part of the data sets used for pattern extraction. Although
predicting their oligomerization states is challenging because
the amino acid sequences of the dimeric wild-type GCN4 and

FIG. 2. List of the 25 strongest pairwise patterns. Dimer patterns are highlighted in pink, and trimer patterns are highlighted in blue. For
instance, the top dimer pattern E . . . L, spanning columns g to d2, describes a pattern with Glu at a g position, Leu at the next d position, and
three arbitrary amino acids in between.

FIG. 3. Sequence profiling and clas-
sification of a typical dimer and a typ-
ical trimer. The plot shows (A) the he-
magglutinin trimer and (B) the JUN-JUN
dimer based on pairwise patterns of the
PrOCoil model, visualizing the contribu-
tion of each amino acid position to the
overall oligomeric tendency. The area
above the base line equates to the pos-
itive/trimeric contributions, the area be-
low corresponds to the negative/dimeric
contributions. The three-dimensional
structures were plotted using PyMOL
(http://pymol.sourceforge.net/).
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its dimeric and trimeric mutants differ only at very few posi-
tions, PrOCoil classified all samples correctly. The corre-
sponding profiling plots are shown in Figs. 4B–4D. Addition-
ally, we show the changes caused by the mutations in the
pairwise patterns. It immediately becomes apparent that the
Asn in position 16 contributes the most weight to the dimeric
tendency of GCN4wt (Fig. 4A). This can be explained struc-
turally by the fact that the Asn16 residues adopt an energet-
ically more favorable conformation in dimers than in trimers
because they point into the hydrophobic core and form a
distinctive hydrogen bond that is critical for dimer formation in
GCN4 (24). Asn16 participates in 10 of the top 100 dimer
patterns (see supplemental Fig. S4), notably also in two of the
three strongest of them all: L . . . Nd and N . . La, where the
pattern L . . . Nd, for example, denotes a Leu at d position, an
Asn at the next a position, and three arbitrary amino acids in
between. From this follows that Asn16 represents the ideal
target for mutational analysis to switch oligomerization: Sim-
ple deletion of core-stabilizing dimer patterns by altering
Asn16 to Tyr and Leu19 to Thr while not adding important
trimeric patterns results in a correctly predicted change in
oligomerization (Fig. 4B). That is, the overall effect of destroy-
ing strong dimer patterns is sufficient to tip the oligomeric
tendency in the direction of trimerization. What our bioinfor-
matics tool discovered and identified as a deletion of dimer
patterns corresponds to dimer-destabilizing mutations de-
scribed by experimentalists in the literature. Hu et al. showed
that replacing Leu19 with Thr results in conditionally func-
tional GCN4 (45). Furthermore, Potekhin et al. proposed that
Asn16 desolvation is the driving force for GCN4 dimerization
and that most substitutions at this position result in the pref-
erential formation of a trimeric structure (46).

The next example (Fig. 4C) shows that, alternatively, trim-
erization can also be triggered without replacing Asn16 if
strong trimer patterns are added instead. For this purpose,
the trimerizer pattern Arg(g)-h(a)-x-x-h(d)-Glu(e’) was inserted
(23). As Steinmetz and Kammerer verified experimentally (24),
and PrOCoil predicted correctly, oligomerization switches if
mutations are inserted at positions that create strong trimer
patterns. It has been shown that the Arg and Glu in this motif
form a characteristic bifurcated interhelical salt-bridge net-
work, and, because of tight packing interactions with neigh-
boring residues, they play a role in the formation of the hy-
drophobic core (23). These effects are the basis for the
trimerization driving force of the motif. Arbitrary mutations in
this sequence region, however, do not change oligomeriza-

tion. The substitutions have to be selected carefully to create
additional trimer patterns. To prove this point, we chose a
sequence in which Val23 was replaced by Lys, and Lys27 by
Glu (Fig. 4D). This resulted in the loss of three important
Val23-related trimer patterns whereas only two Lys-related
ones were added. At the same time, a strong Lys- and Glu-
related and four strong Lys-related dimeric patterns were
created. This substitution with physicochemically similar
amino acids added new dimer patterns and, as predicted, the
mutations do not affect oligomerization.

Pairwise Patterns—The Building Blocks of Complex Net-
works—The 25 most influential amino acid pairings according
to our PrOCoil model are shown in Fig. 2. On closer inspec-
tion, we are able to support general hypotheses of oligomer-
ization that rely on defining the hydrophobic core positions a
and d (40) and can extend the mainly GCN4-leucin-zipper-
based knowledge concerning the core positions to the whole
heptad. I . . . Id, for example, is a well known trimer pattern of
Ile at core positions d and a that is also ranked high in our list
(as number 4). However, patterns that combine a core posi-
tion with a noncore position seem to be at least as important
to trimerization. For example, patterns with Leu, Ile or Val at a
core position and a tiny Ser at f position are ranked as num-
bers 2, 20, and 75, respectively. Ile at a core position com-
bined with a charged Glu at e position is ranked as number
one, and with Glu at g position as number six. In dimers, the
most highly ranked patterns are combinations of amino acids
with the �-branched Leu in core positions a and d. Interest-
ingly, highly ranked �-branched combinations with Ile in a
core position also occur in dimers (e.g. pattern 22). The 100
most important pairwise patterns for each oligomer according
to the PrOCoil model are listed in supplemental Fig. S4.

DISCUSSION

Inspired by approaches that sought to define and predict
coiled coils based on statistics, we first attempted to find
the rules for dimeric and trimeric oligomerization by exam-
ining the position-specific single amino acid frequencies in
each oligomer. In contrast to hitherto published coiled-coil
statistics, our single amino acid statistics are based on clus-
tered data. This compensates for the (artificially) high preva-
lence of certain sequences in the PDB stemming from con-
centrated scientific interest in certain types of proteins. Our
results show that a simple statistical analysis cannot provide
an explanation or rules for a sequence’s preference for a
certain oligomeric state. Inspired by Berger et al., who used

FIG. 4. Sequence profiling and classification of GCN4 and its mutants. The plot shows (A) the dimeric transcriptional activator protein
GCN4wt, (B) the trimeric GCN4N16I,L19N mutant, (C) the trimeric GCN4E22R,K27E mutant, and (D) the dimeric GCN4V23K,K27E mutant. The
sequence profiling plots on the right side visualize the contribution of each amino acid position to the overall oligomeric tendency, based on
the pairwise patterns from the PrOCoil model. The area above the base line (blue) equates to the positive/trimeric contributions, the area below
(orange) corresponds to the negative/dimeric contributions. Red bars mark the positions that were mutated. Patterns of the top 90 pairwise
pattern list found in GCN4 and its mutants are depicted on the left side to visualize which patterns are added (dark color) or lost (gray) through
mutation.
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pairwise residue correlations for predicting coiled coils (11,
12) and made progress in predicting dimer and trimer forma-
tion (16), we used the hypothesis that all amino acids in a
given sequence influence each other as a basis for our
approach.

We have shown that stepping up to a higher level of com-
plexity, examining the relations between amino acids, is the
key to predicting and understanding oligomerization. For the
first time, a complete network of sequence parameters that
influence oligomerization has been established, and the un-
derlying rules of coiled-coil formation have been provided. We
used an SVM with our new coiled-coil kernel as the method of
choice enabling us to classify with outstanding accuracy new
dimers and trimers from their amino acid sequences. The
validity of our classification results was verified by means of
stringent state-of-the-art testing methods and ensures that
the valuable rules (i.e. the weighted patterns we subsequently
extracted) which the machine learned to determine oligomeric
preference are indeed based on significant patterns. Also, our
tool outperforms the state-of-the-art oligomerization predictor
MultiCoil (see supplemental Section S5).

Although the statistical approach identified similar individ-
ual amino acids as important, our method is much more
powerful: (i) To understand and predict oligomerization, the
patterns in a sequence must be viewed in context, as parts of
a network of interactions spanning the whole sequence. Using
the example of GCN4, we have demonstrated that we can
merge this information in our sequence analyzing tool PrOCoil
and draw an overall picture that explains the behavior of a
sequence that, until now, seemed unclassifiable. (ii) We are
able to provide a detailed picture of the influence of each
amino acid on the overall structure by taking its neighborhood
into account. PrOCoil can even be used to indicate which
sequence positions contribute most to the dimeric or trimeric
tendency. An amino acid at a certain position participates in
various patterns; consequently, the patterns in a sequence
are correlated. The factorization performed by PrOCoil is
therefore essential to decorrelate the patterns and to reduce a
coiled-coil-spanning network to its building blocks.

Our mutant GCN4 examples illustrate that the influence of
mutations on oligomerization depends on the sequence con-
text, i.e. on the overall effect of the change in the interdepen-
dent patterns caused by the mutations. Added trimer patterns
and/or loss of strong dimer patterns results in an overall
trimeric structure, whereas adding strong dimer patterns
maintains dimerization of the protein.

The influence of the b, c, and f positions on oligomerization
has long been underestimated because research has focused
mainly on the positions in the hydrophobic core. Our results,
however, indicate that all positions inside a heptad contribute
to the oligomeric tendency of a coiled-coil sequence. In fact,
nine out of the 25 most influential trimer patterns and 10 out
of the 25 most influential dimer patterns are pairings with
noncore positions (Fig. 2). The fact that a single amino acid

approach is insufficient because individual positions must
always be viewed in context becomes particularly obvious
when comparing the respective patterns ranked as number
two for dimers and as number five for trimers. Both patterns
have a Leu at d position, but when combined with Asn at a
position (L . . . Nd), it counts in favor of dimers, whereas with
Val in a position (L . . . Vd) it is characteristic of trimers.

The patterns provided, together with our sequence profiling
tool, will assist experimentalists in coiled-coil mutation anal-
ysis. We are confident that our findings will also improve
rational coiled-coil design. In summary, the data we collected
and the tool we designed in this work offer a new basis for
coiled-coil prediction and design. Our findings shed light on
the link between coiled-coil sequence and structure.

Outlook—We have shown that the coiled-coil data set can
be augmented and classification enhanced with a sophisti-
cated approach that incorporates a BLAST search followed
by a strict selection process. This is of great interest in view of
the vast quantity of data with which next generation sequenc-
ing techniques will soon provide us. Our BLAST approach can
be used to tap this source of data for a wealth of new training
sequences. Subsequent retraining of SVMs with our coiled-
coil kernel should further refine our pattern set and further
improve our prediction performance.

The next step will be to extend the current machine, which
characterizes oligomerization states of coiled-coil proteins,
into a machine that also predicts the non-coiled coil case.
Mutations that are potentially coiled-coil-disrupting or ex-
tremely rare cases of high-order oligomerizations (tetramers,
pentamers, etc.) have as yet to be checked by complementary
experiments. Oligomers of higher order can at this time not be
predicted by PrOCoil because the number of structurally ver-
ified samples is too small to produce meaningful results by
training an SVM. However, our method can easily be ex-
tended to include their prediction should a sufficiently large
set of such samples become available in the future.

Availability—A web version and an R package of our predic-
tion and profiling software (PrOCoil) are available to the scien-
tific community (see http://www.bioinf.jku.at/software/procoil/).
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