
Aiding Drug Design with Deep Neural Networks

Thomas Unterthiner∗, Andreas Mayr∗, Günter Klambauer
RISC Software GmbH & Institute of Bioinformatics

Johannes Kepler University Linz, Austria

Marvin Steijaert
OpenAnalytics, Belgium

Jörg K. Wegner, Hugo Ceulemans
Johnson & Johnson

Pharmaceutical Research & Development

Sepp Hochreiter
Institute of Bioinformatics

Johannes Kepler University Linz, Austria

Abstract

An important computational tool in drug design is target prediction where either
for a given chemical structure the interacting biomolecules (e.g. proteins) must be
identified. Chemical structures interact with different biomolecules if they have
similar 3D structure. Thus, the outputs of the prediction are highly interdependent
from each other. Furthermore, we have partially labelled molecules since not all
training molecules are measured of being active on each biomolecule.
The Merck Kaggle challenge on chemical compound activity was won by Hin-
ton’s group with deep networks. This indicates the high potential of deep learning
in drug design and attracted the attention of big pharma. However, the unreal-
istically small scale of the Kaggle dataset does not allow to assess the value of
deep learning in drug target prediction if applied to in-house data of pharmaceu-
tical companies. Even a publicly available drug activity data base like ChEMBL
is magnitudes larger than the Kaggle dataset. ChEMBL has 13 M compound de-
scriptors, 1.3 M compounds, and 5 k drug targets, compared to the Kaggle dataset
with 11 k descriptors, 164 k compounds, and 15 drug targets.
On the ChEMBL database, we compared the performance of deep learning to
seven target prediction methods, including two commercial predictors, three pre-
dictors deployed by pharma, and machine learning methods that we could scale to
this dataset. Deep learning outperformed all other methods with respect to the area
under ROC curve and was significantly better than all commercial products. Deep
learning surpassed the threshold to make virtual compound screening possible and
has the potential to become a standard tool in industrial drug design.

1 Introduction

The pharmaceutical industry is currently challenged to increase the efficiency of drug development,
since every year fewer drugs reach the market [1]. Machine learning methods could exploit a wealth
of measurements that were accumulated by pharma companies and, thereby, offer Big Pharma alter-
natives.

The first step of a drug design pipeline is to identify a biomolecular target upon which a potential
drug can act, e.g. a protein whose activity can be modified by a compound to achieve a benefi-
cial therapeutic effect. Predicting these target-interactions using computational approaches is an
important tool in modern drug design.

Applying target prediction in a realistic setting involves predicting several hundrets or thousands of
outputs at the same time, some of which might be highly correlated. The correlation stems from the
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Figure 1: Hierarchical nature of fingerprint features: by combining the ECFP features we can build
reactive centers. By pooling specific reactive centers together we obtain a pharmacophore that en-
codes a specific pharmacological effect.

fact that some targets are structurally very similar to each other. For most targets, only have partially
labelled data is available, because compounds are typically only measured on a small set of targets.

In the Merck Kaggle challenge, Deep Learning showed promise for these kind of data. We assess the
applicability and performance of deep networks at target prediction and compare them to state-of-
the-art as well as commercial target prediction methods. Toward this goal we compiled a benchmark
data set from ChEMBL, a database which resembles in-house databases of Big Pharma, though it
still is considerably smaller. The Kaggle challenge comprised 15 targets, 164,024 compounds, and
11,081 features, while our ChEMBL benchmark contains more than 1,200 targets, 1.3 M compounds
with 13 M ECFP12 features. This dataset serves to assess not only the raw performance, but also
whether the methods scale to pharma in-house data.

Deep learning architectures seem to be well suited for target prediction because they (1) allow for
multi-task learning [2] and (2) automatically construct complex features [3], which for target pre-
diction are assumed to resemble pharmacophore descriptors. First, multiple target learning has
two advantages: (a) it naturally allows for multi-label information and therefore can utilize rela-
tions between targets; (b) it allows to share hidden unit representations among prediction tasks.
The latter item is particularly important as for some targets very few measurements are available,
therefore single target prediction may fail to construct an effective representation. In contrast, deep
networks exploit representations learned across different tasks and can boost the performance on
tasks with few training examples. Secondly, deep networks provide hierarchical representations of
a compound, where higher levels represent more complex concepts [4]. In pharmaceutical research
complex representations of compounds have a long tradition: A major goal of drug design is the
identification of pharmacophores, [5] which are the sets of steric and electronic properties that to-
gether enable an interaction with a target. These properties include hydrophobic regions, aromatic
rings, electron acceptors or donors, which in turn can be described by substructures yielding these
properties. Deep networks with ECFP12 fingerprints (chemical substructures) are ideally suited to
represent properties in their first layer and in turn form pharmacophores in higher layers, as seen
in Figure 1. The potential of deep learning is to find novel pharmacophores or representations of
comparable complexity.

2 Experiments

2.1 Dataset

We compiled a target prediction benchmark dataset out of the ChEMBL database [6], a manually
curated database of bioactivity measurements, which aims to centrally store the high-quality mea-
surements of other chemistry resources.

We extracted all pharmaceutically relevant measurements from ChEMBL. Target measurements are
reported in ChEMBL as continuous values, however for a classification task we require binary la-
bels. We thus rely on explicit activity comments where provided, and defined a threshold otherwise.
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This yielded 2,103,018 measurements distributed across 5,069 targets and 743,336 compounds. Ad-
ditionally there are 415,527 measurements which exhibit a very weak signal. These are not used for
testing as their signal is no reliable but they may still be a valuable enhancement of the training set.
In order to make sure each target was realistically learnable, we discarded all targets with less than
15 samples per label, leaving 1,230 targets.

ChEMBL stores compounds as connected graphs of atoms, which we transformed into a high-
dimensional binary representation using Extended Connectivity FingerPrints (ECFP12) [7] fea-
tures.Each feature/fingerprint denotes the presence or absence of a certain chemical substructure.
This yielded a total of 13,558,545 sparse features.

It is important that compounds which share a scaffold are not shared across training and test set, in
order to guarantee that our dataset reflects the challenges of the daily drug development reality. As
already mentioned, the value of virtual screening is determined by the ability to find new scaffolds
with target activity. Thus, we clustered compounds using single linkage clustering to guarantee a
minimal distance between training and test set. Clustering yielded 400,000 clusters which were
partitioned into three folds of approximately equal size for cross-validation.

The performance of a classifier is evaluated by the AUC (area under the ROC curve) separately for
each target. We report the mean AUC for each method.

2.2 Methods

2.2.1 Deep Neural Network

Our network consists of one or multiple layers of ReLU hidden units [8, 9], followed by one layer
of 1,230 sigmoid output units, one for each molecular target or classification task.

Using all the 7 M inputs for the deep net were infeasible on our hardware, therefore we removed
features that were present in less than 100 compounds. 43,340 input features were kept. We stored
the weight parameters on a single GPU with 12 GB RAM and used mini-batches of 1,024 samples
for stochastic gradient descent learning. Since storing our input data in dense format requires about
5 TB of disk space, we used a sparse storage format. However, it proved to be faster to upload a
mini-batch in sparse format to the GPU and then convert it to dense format instead of using sparse
matrix multiplication. Overall, training a network takes between 3 to 4 days.

2.2.2 Multi-Task Learning for Deep Networks

Each single training sample contributed only to a few of these tasks. Thus output units that were not
active during a training sample were masked out during backpropagation.

Additionally we weighted the output-layer deltas coming from each output by the number of com-
pounds that have been measured on the associated target. This ensures that across the whole training
set each target has the same amount of influence on the hidden representation.

2.2.3 Other Methods

We compare Deep Learning to the following Machine Learning methods that are used in target
prediction, namely, Support Vector Machines, Binary Kernel Discrimination [10], Logistic Regres-
sion, k-nearest neighbour. We also re-implemented the following commercial products: a Parzen-
Rosenblatt KDE-based approach [11],the Pipeline Pilot Bayesian Classifiers (a Naive Bayes statis-
tics based approach) [12] and the Similarity Ensemble Approach (SEA) [13].

2.3 Results

Table 1 shows the mean AUC values across 1,230 targets for each of the classifiers we used. The
deep neural network significantly outperformed its competitors, including two commercial methods
with respect to the area under ROC curve (AUC) averaged over the prediction tasks, i.e. targets.
Other well-established machine learning methods that could be scaled to the data set, such as SVMs,
also performed better than the commercial methods.
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Table 1: Performance of target prediction methods in terms of mean AUC across targets. The first
column gives the method, the second column the AUC value, and the third column the p-value of a
paired Wilcoxon test with the The alternative hypothesis that the deep neural network has on average
a larger AUC than the other method.

Method AUC p-value
Deep network 0.830
SVM 0.816 1.0e-07
BKD 0.803 1.9e-67
Logistic Regression 0.796 6.0e-53
k-NN 0.775 2.5e-142
Pipeline Pilot Bayesian Classifier 0.755 5.4e-116
Parzen-Rosenblatt 0.730 1.8e-153
SEA 0.699 1.8e-173

The neural net achieves an AUC ≥ 0.8 on 813 out of the 1,230 targets, or ≈ 66% of the time. The
median AUC lies at 0.8588. On 12 targets we achieve perfect prediction accuracy (AUC = 1.0). This
is in stark contrast to current commercial solutions, where the median AUC lies below 0.8. Allmost
all methods suffered from severe outliers. Of the methods that achieved an average AUC of over 0.8,
the Deep Network has the least severe outliers. We hypothesize that the network could leverage its
shared hidden representation to predict tasks which are difficult to solve when tackled in isolation.
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