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1 Introduction

This supplement contains additional information complementing the main manuscript and is struc-
tured as follows: First, the rectified factor network (RFN) learning algorithm with E- and M-step
updates, weight decay and dropout regularization is given in Section In Section |3} we proof
that the (RFN) learning algorithm is a “generalized alternating minimization” (GAM) algorithm and
converges to a solution that maximizes the RFN objective. The correctness of the RFN algorithm
is proofed in Section[d] Section [5]describes the maximum likelihood factor analysis model and the
model selection by the EM-algorithm. The RFN objective, which has to be maximized, is described
in Section[6] Next, RFN’s GAM algorithm via gradient descent both in the M-step and the E-step
is reported in the Section[7} The following sections [8] and [9] describe the gradient-based M- and
E-step, respectively. In Section[I0] we describe how the RFNs sparseness can be controlled by a
Gaussian prior. Additional information on the selected hyperparameters of the benchmark meth-
ods is given in Section The sections [12|and |[13| describe the data generation of the benchmark
datasets and report the results for three different experimental settings, namely for extracting 50 (un-
dercomplete), 100 (complete) or 150 (overcomplete) factors / hidden units. In Section [I4] describes
experiments, that we have done to assess the performance of RFN first layer pretraining on CIFAR-
10 and CIFAR-100 for three deep convolutional network architectures: (i) the AlexNet|Ciresan et al.
[2012]], [Krizhevsky et al.[[2012], (ii) Deeply Supervised Networks (DSN) |Lee et al.|[2014], and (iii)
our 5-Convolution-Network-In-Network (SC-NIN). Finally, Section |15| provides running times for
RFN’s projected Newton step and for solving a quadratic program.

2 Rectified Factor Network (RFN) Algorithms

Algorithm [T] is the rectified factor network (RFN) learning algorithm. The RFN algorithm calls
Algorithm |2| to project the posterior probability p; onto the family of rectified and normalized
variational distributions @;. Algorithm [2| guarantees an improvement of the E-step objective
O =1%"  Dki(Q; || ;). Projection Algorithm [2|relies on different projections, where a more
complicated projection is tried if a simpler one failed to improve the E-step objective. If all follow-
ing Newton-based gradient projection methods fail to decrease the E-step objective, then projection
Algorithm [2| falls back to gradient projection methods. First the equality constraints are solved and
inserted into the objective. Thereafter, the constraints are convex and gradient projection methods
are applied. This approach is called “generalized reduced gradient method” |/Abadie and Carpentier
[1969], which is our preferred alternative method. If this method fails, then Rosen’s gradient projec-
tion method [Rosen| [[1961]] is used. Finally, the method of Haug and Arora|Haug and Aroral [[1979]]
is used.

First we consider Newton-based projection methods, which are used by Algorithm [2] Algorithm ]
performs a simple projection, which is the projected Newton method with learning rate set to one.
This projection is very fast and ideally suited to be performed on GPUs for RFNs with many coding
units. Algorithm [3]is the fast and simple projection without normalization even simpler than Algo-
rithm 4] Algorithm [5 generalizes Algorithm [4] by introducing step sizes A and +. The step size A
scales the gradient step, while v scales the difference between to old projection and the new pro-
jection. For both A and v annealing steps, that is, learning rate decay is used to find an appropriate
update.

If these Newton-based update rules do not work, then Algorithm|[G]is used. Algorithm [6] performs a
scaled projection with a reduced Hessian matrix H instead of the full Hessian 3 - 1. For computing
H an e-active set is determined, which consists of all j with ;1; < €. The reduced matrix H is the
Hessian % ! with e-active columns and rows j fixed to unit vector e;.

The RFN algorithm allows regularization of the parameters W and ¥ (off-diagonal elements) by
weight decay. Priors on the parameters can be introduced. If the priors are convex functions, then
convergence of the RFN algorithm is still ensured. The weight decay Algorithm [/| can optionally
be used after the M-step of Algorithm [I] Coding units can be regularized by dropout. However
dropout is not covered by the convergence proof for the RFN algorithm. The dropout Algorithm
is applied during the projection between rectifying and normalization. Methods like mini-batches or
other stochastic gradient methods are not covered by the convergence proof for the RFN algorithm.
However, in (Gunawardana and Byrne| [2005] it is shown how to generalize the GAM convergence



proof to mini-batches as it is shown for the incremental EM algorithm. Dropout and other stochastic
gradient methods can be show to converge similar to mini-batches.

Algorithm 1 Rectified Factor Network

Input
forl <i<n:v;, € R™,
number of coding units [
Hyper-Parameters
‘Ilmina Wmax’ N, Mw, P> T, 1< n <1
Initialization
¥ = 71, W element-wise random in [—p, p],
C = 1 ¥, v v}, STOP=false
Main
while STOP=false do
E-stepl
foralll <i<ndo
()i = (I + WIO1W) " WTw—1 o,
end for .
¥ = (I + WT\II*IW)
Projection
perform projection of (p,,); onto the feasible set by Algorithm 2| giving p;
E-step2
U=, Y vn

S = %Z?:lﬂi“? + X

—M-step:

nw ="nNv =1
E=C-UWl - WU+ WSWT
—W update——

W =W + nw (US‘l—W)

—diagonal ¥ update——

foralll <k <mdo

Vi = Vi + no (Brr — k)

end for

—ull ¥ update——

v =0+ (E-9¥)

—>bound parameters——

W = median{—Wiax , W, Whax}

U = median{¥ i, , ¥, max{C}}

if stopping criterion is met: STOP=true
end while




Algorithm 2 Projection with E-Step Improvement

Goal
obtain p;*" = u; that decrease the E-step objective
Input
Snew _ Ep’ Eold — 2gld
for 1 <i <mn:(pp)is w9 pi = N((1p)is Zp)
simple projection P (rectified or rectified & normalized),
E-step objective: O = = > | Dir,(Q; || pi)
Ymins Amins P~»> P, € (for e-active set)
Main
—Simple Projection
perform Newton Projection by Algorithm]or Algorithm 3]
—Scaled Projection
if 0 < AO then
following loop for: (1) v, (2) A, or (3) v and \ annealing
y=A=1
while 0 < AO and A > Ay and v > i, do
v = p~ 7y (skipped for A annealing)
A = px A (skipped for v annealing)
perform Scaled Newton Projection by Algorithm[3]
end while
end if
—Scaled Projection With Reduced Matrix
if 0 < AO then
determine e-active set as all j with u; < e
set H to X! with e-active columns and rows j fixed to e;
following loop for: (1) v, (2) A, or (3) v and \ annealing
y=A=1
while 0 < AO and A\ > Apin and v > i, do
v = py 7y (skipped for A annealing)
A = px A (skipped for v annealing)
perform Scaled Projection With Reduced Matrix by Algorithm[6]
end while
end if
——General Gradient Projection
while 0 < AO do
use generalized reduced gradient/Abadie and Carpentier| [1969] OR
use Rosen’s gradient projection Rosen| [1961]] OR
use method of Haug and Arora Haug and Aroral[1979]
end while

Algorithm 3 Simple Projection: Rectifying

Goal

for 1 < i < n: project (p,); onto feasible set giving p;
Input

(1p)i
Main

foralll1 <j<ldo

,U”L'j = Imax {07 [(M[))TL}
end for




Algorithm 4 Simple Projection: Rectifying and Normalization

Goal
for 1 < ¢ < n: project (p,); onto feasible set giving p;
Input
forl <i<n:(pp);
Rectifier
foralll <i<ndo
foralll1 <j<ldo

iy = max {0, [(1,)i], }
end for
end for
Normalizer
foralll <i<ndo
if at least one fi;; > 0 then
foralll1 <j<ldo
— Hij
IV Sy
end for
else
foralll1 <j <ldo
o [ g = {{()])
* 0 otherwise
end for
end if
end for

Algorithm 5 Scaled Newton Projection

Goal
perform a scaled Newton step with subsequent projection
Input
for1 <i<mn:(pp);
for 1 <i < mn:pgd
simple projection P (rectified or rectified & normalized),
A (gradient step size), y (projection difference)
Main
d =P (u + A ()i — po))
pre = P (o (d )

Algorithm 6 Scaled Projection With Reduced Matrix

Goal

perform a scaled projection step with reduced matrix
Input

for1 <i<mn:(pp);

for1 <i < mn:pfd

simple projection P (rectified or rectified & normalized),

A? ,y’ H, 2;1

Main
d=P(u+ XH'Z, (( )i — 1))
u;lew _ P( 11d + 'Y( Old))




Algorithm 7 Weight Decay

Input
Parameters W
Weight decay factors v (Gaussian) and vz, (Laplacian)

Gaussian
W =W — oW
Laplacian
W = median{—yr , W, v}
W=W_-W
Algorithm 8 Dropout
Input
forl <i<n:p,;
dropout probability d
Main

foralll <i<ndo
foralll1 <j<ldo

Pr(6=0) =d
Mij = O [y
end for
end for

3 Convergence Proof for the RFN Learning Algorithm

Theorem 1 (RFN Convergence). The rectified factor network (RFN) learning algorithm given in Al-
gorithml[l)is a “generalized alternating minimization” (GAM) algorithm and converges to a solution
that maximizes the objective F.

Proof. The factor analysis EM algorithm is given by Eq. and Eq. (68) in Section[5] Algorithm |T]
is the factor analysis EM algorithm with modified the E-step and the M-step. The E-step is modified
by constraining the variational distribution () to non-negative means and by normalizing its means
across the samples. The M-step is modified to a Newton direction gradient step.

Like EM factor analysis, Algorithm|l|aims at maximizing the negative free energy JF, which is

F=- Zlogp v) — = ZDKL ) 1 p(hs | v) M
Q(h;

Z/Q ) log p(v;) dh; — *Z/Q log(|))dhz

:—%Z/Q log(f;)i)dhi

:_%Z/Q +72/Q ) logp(vi | hi) dh

Z/Q ) ogp(os | ) dh — - 3™ D QR (o)

=1

S|

1
n
Dk, denotes the Kullback-Leibler (KL) divergence [Kullback and Leibler [1951]], which is larger
than or equal to zero.

Algorithm [1{decreases = > | Dxr,(Q(h;) || p(h; | v;)) (the E-step objective) in its E-step under
constraints for non-negative means and normalization. The constraint optimization problem from



Section [9.2] for the E-step is

i ZDKL i) || p(hi [ i) )

sit. Vi:opy 0

Z )
n
2.

The M-step of Algorithm [T]aims at decreasing

SRS

=—72/@ ) Tog (p(v; | b)) dh ()

Algorithm [I] performs one gradient descent step in the Newton direction to decrease £, while EM
factor analysis minimizes €.

From the modification of the E-step and the M-step follows that Algorithm [I|is a Generalized Al-
ternating Minimization (GAM) algorithm according to|Gunawardana and Byrne|[2005]. GAM is an
EM algorithm that increases F in the E-step and increases F in the M-step (see also Section [7)).
The most important requirements for the convergence of the GAM algorithm according to Theo-
rem [ (Proposition 5 in|Gunawardana and Byrne|[2005])) are the increase of the objective F in both
the E-step and the M-step. Therefore we first show these two decreases before showing that all
requirements of convergence Theorem [ are met.

Algorlthm [ ensures to decrease the M-step objective. The M-step objective £ is convex in W
and ¥ ! according to Theorem |35} I and Theorem [7} The update with ny = ngy = n = 1 leads to
the minimum of £ according to Theorem[5and Theorem[7] The convexity of £ guarantees that each
update with 0 < ny = ng = n < 1 decreases the M-step objective £, except the current W and
W~ are already the minimizers.

Algorithm [I] ensures to decrease the E-step objective. The E-step decrease of Algorithm [I] is
performed by Algorithm 2] According to Theorem [T1] the scaled projection with reduced matrix
ensures a decrease of the E-step objective for rectifying constraints (convex feasible set). Accord-
ing to Theorem [T0] also gradient projection methods ensure a decrease of the E-step objective for
rectifying constraints. For rectifying constraints and normalization, the feasible set is not convex
because of the equality constraints. To optimize such problems, the generalized reduced gradient
method |Abadie and Carpentier| [[1969] solves each equality constraint for one variable and inserts it
into the objective. For our problem Eg. gives the solution and Eq. the resulting convex
constraints. Now scaled projection and gradient projection methods can be applied. For rectifying
and normalizing constraints, also Rosen’sRosen![1961]] and Haug & Arora’s|Haug and Aroral[[1979]
gradient projection method ensures a decrease of the E-step objective since they can be applied to
non-convex problems.

We show that the requirements as given in Section [7]for GAM convergence according to Theorem 4]
(Proposition 5 in|Gunawardana and Byrne| [[2005]]) are fulfilled:
1. the learning rules, that is, the E-step and the M-step, are closed maps — ensured by
continuous and continuous differentiable maps,

2. the parameter set is compact — ensured by bounding ¥ and W,

3. the family of variational distributions is compact (often described by the feasible set of
parameters of the variational distributions) — ensured by continuous and continuous dif-
ferentiable functions for the constraints and by the bounds on the variational parameters g
and ¥ determined by bounds on the parameters and the data,

4. the support of the density models does not depend on the parameter —> ensured by Gaus-
sian models with full-rank covariance matrix,

5. the density models are continuous in the parameters — ensured by Gaussian models

10



6. the E-step has a unique maximizer — ensured by the convex, continuous, and continuous
differentiable function that is minimized Dredze et al.| [2008] |2012] together with com-
pact feasible set for the variational parameters, the maximum may be local for non-convex
feasible sets stemming from normalization,

7. the E-step increases the objective if not at the maximizer — ensured as shown above,

8. the M-step has a unique maximizer (this is not required) — ensured by minimizing a
convex, continuous and continuous differentiable function in the model parameter and a
convex feasible set, the maximum is a global maximum,

9. the M-step increases the objective if not at the maximizer — ensured as shown above.

O

Since this Proposition 5 in|Gunawardana and Byrne|[2005] is based on Zangwill’s generalized con-
vergence theorem, updates of the RFN algorithm are viewed as point-to-set mappings [Zangwill
[1969]. Therefore the numerical precision, the choice of the methods in the E-step, and GPU im-
plementations are covered by the proof. That the M-step has a unique maximizer is not required to
proof Theorem [T| by Theorem f] However we obtain an alternative proof by exchanging the varia-
tional distribution @) and the parameters (W, W), that is, exchanging the E-step and the M-step. A
theorem analog to Theorem f]but with E-step and M-step conditions exchanged can be derived from
Zangwill’s generalized convergence theorem Zangwill| [1969].

The resulting model from the GAM procedure is at a local maximum of the objective given the model
family and the family of variational distributions. The solution minimizes the KL-distance between
the family of full variational distributions and full model family. “Full” means that both the observed
and the hidden variables are taken into account, where for the variational distributions the probability
of the observations is set to 1. The desired family is defined as the set of all probability distributions
that assign probability one to the observation. In our case the family of variational distributions
is not the desired family since some distributions are excluded by the constraints. Therefore the
solution of the GAM optimization does not guarantee stationary points in likelihood |Gunawardana
and Byrne| [2005]. This means that we do not maximize the likelihood but minimize

— F =~ Dkn(Q(h,v) | p(h,v)) + ¢ “4)

according to Eq. (73)), where c is a constant independent of () and independent of the model param-
eters.

4 Correctness Proofs for the RFN Learning Algorithms

The RFN algorithm is correct if it has a low reconstruction error and explains the data covariance
matrix by its parameters like factor analysis. We show in Theorem [2| and Theorem [3| that the RFN
algorithm

1. minimizes the reconstruction error given p; and X (the error is quadratic in ¥);
2. explains the covariance matrix by its parameters W and ¥ plus an estimate of the second

moment of the coding units S.

Since the minimization of the reconstruction error is based on p;, the quality of reconstruction and
covariance explanation depends on the correlation between p; and v;. The larger the correlation
between p; and v;, the lower the reconstruction error and the better the explanation of the data
covariance. We ensure maximal information in p; on v; by the I-projection (the minimal Kullback-
Leibler distance) of the posterior onto the family of rectified and normalized Gaussian distributions.

The reconstruction error for given mean values p; is

> el (5)
1=1

S|

11



where
€ = v, — Wy, (6)

The reconstruction error for using the whole variational distribution Q)(h;) instead of its means is
. Below we will derive Eq. (17), which is

T = diag <:L Ze,-eiT+W2WT> ) (7)
=1

Therefore W is the reconstruction error for given mean values plus the variance W W introduced
by the hidden variables.

4.1 Diagonal Noise Covariance Update

Theorem 2 (RFN Correctness: Diagonal Noise Covariance Update). The fixed point W minimizes
Tr (¥) given p; and X by ridge regression with

Tr (@) = % ;Hei\li + |w 21/2Hi , (8)
where we used the error
€ = v, — Wy, ©)
The model explains the data covariance matrix by
C =9 +WSsSwT (10)

up to an error, which is quadratic in ¥ for W < WWT. The reconstruction error

1 n 9
=3 el 1)
i=1
is quadratic in ¥ for ¥ < WWT,

Proof. The fixed point equation for the W update is
AW =US 't -W =0 = W=US". (12)
Using the definition of U and S, the fixed point equation Eq. (T2) gives

—1
1 & 1 &
w = (= sl it PETEAEE > 13
(Zu)(Zour ) a3

Therefore W is a ridge regression estimate, also called generalized Tikhonov regularization esti-
mate, which minimizes

2
lv: — W ) + HW 21/2HF (14)

M-

1
n

i=1

3=

2
||61H§ =+ HW 21/2H
F

n

N
[

I

&
Il
-

eZT e; + Tr (W »1/2 ZI/ZWT)

n

= Tr

VRS
S|

€ € + WEWT> ;
i=1

where we used the reconstruction error

€, = V; — Wp/i. (15)



‘We obtain with this definition of the error

n

— el + Wxw?

2 T § T T E T
— E v, v; — ﬁ - v 1 1%% — E 2 W i U;
1= 1=

1 n

+ = Wpip! W+ wew?
ni:l

=C -UWT —wu” + wswT.

Therefore from the fixed point equation for ¥ with the diagonal update rule follows

1 n
¥ = diag ( ZEiEzT + WEWT> )
s
where “diag” projects a matrix to a diagonal matrix. From this follows that

1 n
Tr(¥) = Tr <n D eiel + WZJWT> .
=1

Consequently, the fixed point W minimizes Tr (¥) given p; and 3.

(16)

7)

(18)

After convergence of the algorithm 3 = (I + WT\II’1W)71 holds. The Woodbury identity

(matrix inversion lemma) states

Ww? +®) = v - W (I + Welw) T wie!

from which follows by multiplying the equation from right and left by ¥ that

WEW” = w (I + wie'w) w7
— v - (WWT + @) W

Inserting this equation Eq. (20) into Eq. (I7) gives

T = diag <i e + v - (WWT 4 ) w)
i=1

S

:\Il—i—diag( eief—W(WWT+W)1W>.

1

o
Il

Therefore we have
1 — -1
di - el —w (WWT 4+ @) w)] =o0.
1ag (n ;e €; ( + ) )
It follows that
1 < -1
T (= P — (\IJ ww?l + & \Il)
T (n ;e el> T ( + )

ST ((WwWT + ) ) T (w)

The inequality uses the fact that for positive definite matrices A and B inequality Tr(AB)
Tr(A)Tr(B) holds Patel and Toda| [1979). Thus, for ¥ < WWT the error Tr (£ 3" | €€

1
1y T "
= i1 €; € is quadratic in W

Multiplying the fixed point equation Eq. by S gives U = W S. Therefore we have:

wur =wsw? =uwT.

13
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(19)

(20)

21

(22)

(23)

I IA

(24)



Inserting Eq. (20) into the first line of Eq. (16) and Eq. (24) for simplifying the last line of Eq. (I6)
gives

' —c-w_-wswT. (25)

S

deiel — @ (WWT 4 w)
=1

Using the trace norm (nuclear norm or Ky-Fan n-norm) on matrices, Eq. states that the left hand
side is quadratic in ¥ for ¥ < W W The trace norm of a positive semi-definite matrix is its
trace and bounds the Frobenius norm [Srebro| [2004]. Furthermore, Eq. (22)) states that the left hand
side of this equation has zero diagonal entries. Therfore it follows that

C=%+Wsw’ (26)
holds except an error, which is quadratic in ¥ for ¥ < WW T The diagonal is exactly modeled
according to Eq. 22). O

Therefore the model corresponding to the fixed point explains the empirical matrix of second mo-
ments C by a noise part ¥ and a signal part W SW?. Like factor analysis the data variance is
explained by the model via the parameters W (noise) and W (signal).

4.2 Full Noise Covariance Update

Theorem 3 (RFN Correctness: Full Noise Covariance Update). The fixed point W minimizes
Tr (W) given p; and X by ridge regression with

Te (@) = % ;”QH% + w 21/2Hi : @7
where we used the error
€ = v, — W (28)
The model explains the data covariance matrix by
C=9v4+WsSwT, (29)
The reconstruction error
1 2
2 2l (30)

is quadratic in ¥ for 8 < WWT,

Proof. The first part follows from previous Theorem 2| The fixed point equation for the ¥ update is
v=C-UW' -WU" + WsW", 31)
using Eq. (29) this leads to

C =9 +wWswT. (32)
From Eq. (I6) follows for the fixed point of ¥ with the full update rule:
1 n
= - i€, + WEWT. 33
Inserting Eq. (20) into Eq. (33) gives
1 & 1
v = - i€, + ¥ - (WW" +¥) ¥ 34
DILL ww' e, G4
from which follows
1 o _
EZeieiT:\Il(WWT—i—\II)l\II. (35)
i=1
Thus, the error Tr (1 "7 | €;e!) = 237 | €l¢; is quadratic in ¥, for & < WWT. O

14



5 Maximum Likelihood Factor Analysis

We are given the data {v} = {v1,...,v,} which is assumed to be centered. Centering can be done
by subtracting the mean g from the data. The model is
v =Wh + e, (36)
where
h ~ N(0,I) and € ~ N (0,%) . (37

The model includes the observations v € R™, the noise € € R™, the factors h € RE, the factor
loading matrix W € R™*!, and the noise covariance matrix ¥ € R™*™_ Typically we assume
that W is a diagonal matrix to explain data covariance by signal and not by noise. The data variance
is explained through a signal part W h and through a noise part €. The parameters of the model
are W and W. From the model assumption it follows that if h is given, then only the noise € is a
random variable and we have

v|h ~ N (Wh,¥) . (38)

We want to derive the likelihood of the data under the model, that is, the likelihood that the model
has produced the data. Let E denote the expectation of the data including the prior distribution of
the factors and the noise distribution. We obtain for the first two moments and the variance:

E(v) = E(Wh + €) = WE(h) + E(e) = 0, (39)
E(wov") = E(Wh + €)(Wh + ¢)7) =
WE (hh")WT + WE (h)E (")
+ E(e) E(h") WT + E(e€”)
ww? + v
var(v) = E(vv”) — (E@)? = wwT + . (40)

The observations are Gaussian distributed since their distribution is the product of two Gaussian
densities divided by a normalizing constant. Therefore, the marginal distribution for v is

v~ NO, WWT + &) . (41)

The log-likelihood log [T;-; p(v;) of the data {v} under the model (W, ¥) is

long('ui) = log 1_[(271')_7"/2 ww’ + lIl|71/2

i=1 i=1
exp (—; (’ulT (ww? + \Il)_lvi))
nm n

=5 log (27) — 5 log |[WW7' + ¥

(42)

f%szT (WW7T + ®) o,
=1

where |.| denotes the absolute value of the determinant of a matrix.

To maximize the likelihood is difficult since a closed form for the maximum does not exists. There-
fore, typically the expectation maximization (EM) algorithm is used to maximize the likelihood.
For the EM algorithm a variational distribution @ is required which estimates the factors given the
observations.

We consider a single data vector v;. The posterior is also Gaussian with mean (p,,); and covariance
matrix 3,:

hi|v; ~ N((P‘p)ivzp) (43)
()i = WT(WWT 4+ @) ',
%, =1 -wW' Ww7” + )"'w,
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where we used the fact that
a ~ N(Na72aa) , W~ N(lj/uyzuu) s (44)
Yua = Cov(u,a)and %,, = Cov(a,u):
alu ~ N(“a + Eauz;& (u — pu) 5 Yoo — Eauz;&z““)

and
E(hv) = WEMhR") = W. (45)
The EM algorithm sets @ to the posterior distribution for data vector v;:
therefore we obtain for standared EM
pi = (KHe)i = (Hp)i (47)
YX=3=53,. (48)

The matrix inversion lemma (Woodbury identiy) can be used to compute p; and 3:
WW” +9)" = v - e 'W (I + We'w) wiel. 49)
Using this identity, the mean and the covariance matrix can be computed as:

I+ wie'w) " Wity (50

pi = W (wWw’ + \I')f1 v, =
1 —1

S=I-W WWT + %) W= (I+ W& 'W)

The EM algorithm maximizes a lower bound F on the log-likelihood:
F = logp(vi) — Dkr(Q(h:) || p(hi | vi)) 1)

Q(h:)
/Q ) log p(v;) dh; /Q W dh;
/Q log ( i) dh;

hiyv z>
- o

_ /Q ) logp(v; | hs) dh; — D (Q(hi) || p(hy)) -

Dk, denotes the Kullback-Leibler (KL) divergence Kullback and Leibler [[1951] which is larger
than zero.

/Q ) log p(w; | he) dh

F is the EM objective which has to be maximized in order to maximize the likelihood. The E-
step maximizes JF with respect to the variational distribution @), therefore the E-step minimizes
D1, (Q(h;) || p(h; | v;)). After the standard unconstrained E-step, the variational distribution is
equal to the posterior, i.e. Q(h;) = p(h; | v;). Therefore the KL divergence

Dxr(Q(h;) || p(hi [ vi)) = 0 (52)

is zero, thus F is equal to the log-likelihood log p(v;) (F = logp(vl)) The M- step maximizes F
with respect to the parameters (W, ¥), therefore the M-step maximizes | Q(h;)log p(v; | h;)dh;.

We next consider again all n samples {v} = {v1,...,v,}. The expected reconstruction error £ for
these n data samples is

:_7Z/Q ) log (p(v; | o)) ;; (log (p(vi | h)))  (53)

and objective to maximize becomes

f——s—lzDKL hi) || p(hi)) (54)

=1
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The M-step requires to minimize £:

£ = m1og(27r) + %10g|‘1’| + (55)
ZEQ( - Wh) & (v — Why))
= Mlog(2m) + 3 log|¥] + (56)

%ZEQ (o7 ¥ v, — 20O 'Wh; + KIWTE'Wh,)

m 1 1 = 701
= S log(2m) + Jlog|¥| + 3w ¥y, (57)

i=1

3 n 1 B n
_ ﬂ(\p 1W;EQ (hi)'uiT> + 5T (WT\I; "W Eq (hihiT)>

i=1

_m 1 1 a1 - T
=3 log (27) + 2log|\Il| + 2Tr (‘I’ . vai> (58)
( 1W Zu, T) + Tr (WT\II 1W Z (= + mm))
1 —1
=3 (m log (2m) + log|®| + Tr (¥~'C) (59)

—2Tr (P'WU") + Tr (WE'WS)) ,
where Tr gives the trace of a matrix.

The derivatives with respect to the parameters are set to zero for the optimal parameters:

B 1 n . r 1 n . " B
vwg_—ﬁzqf WEQ(hihi)—l-ﬁZ;\Il v, E5(hi) = 0 (60)
and
1.4
Vel = — g0+ 61)

1
7ZEQ (‘1’71 (v; — Wh;) (v; — Wh,i)T\Ifl) =0.
Solving above equations gives:

-1
1 n 1 n
whnew — <nZvi Egi‘vl i) <nz h hT ) (62)
i=1 =1

and
1 & T
new __ — o newg . L newp, . =
v = 3k (0 = W) (v — Wh)T) (63)

1 i T - T new

EA v, v; — *ZviEQ(h)(W )

=1 i=1
l Xn: WhewER (h ) Wnewl Z E~ (h hT) (Wnew)
"= 1 = ’
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We obtain the following EM updates:
E-step: (64)
(I + WIe—'w) " Wi o,
S = I+ we'lw)
Q(hi) = p
Eq (hihi) = pip] + X

Hi

M-step: (65)
1 n 1 n -1
Whew — (n Z’Ui, Ezi‘vi (h’i)> (n ZEQ (h'i hf))
i=1 i=1
1< 1
phew g Z v; viT _ E Z ’UiEg (hz) (WIIQW)T _ (66)
i=1 i=1

;;WﬂewEQ (hi)v] + W“eW% ;EQ (h; hT) (WrenyT
The EM algorithms can be reformulated as:
E-step: 6N
pi = (I + Wi 'w) wihe oy,
X = (I+wWe'w) ",
Eq (hi) = pi
Eq (hihi) = pip] + 2

M-step: (68)
1 n
C == vv
n <
=1
1 n
U= - s BEL (h; 6
n;” & (hi) (69)
1 n
= =Y Eo(h; kT 7
S n; @ (hi hi) (70)
wrew — Uy §-1 an
gy — ¢ - UWT — wu? + wswT. (72)

6 The RFN Objective

Our goal is to find a sparse, non-negative representation of the input which extracts structure from
the input. A sparse, non-negative representation is desired to code only events or objects that have
caused the input. We assume that only few events or objects caused the input, therefore, we aim
at sparseness. Furthermore, we do not want to code the degree of absence of events or objects. As
the vast majority of events and objects is supposed to be absent, to code for their degree of absence
would introduce a high level of random fluctuations.

We aim at extracting structures from the input, therefore generative models are use as they ex-
plicitly model input structures. For example factor analysis models the covariance structure of the
data. However a generative model cannot enforce sparse, non-negative representation of the input.
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The input representation of a generative model is the posterior’s mean, median, or mode. Gener-
ative models with rectified priors (zero probability for negative values) lead to rectified posteriors.
However these posteriors do not have sparse means (they must be positive), that is, they do not yield
sparse codes Frey and Hinton|[[1999]. For example, rectified factor analysis, which rectifies Gaussian
priors and selects models using a variational Bayesian learning procedure, does not yield posteriors
with sparse means |[Harva and Kaban| [2005] 2007]. A generative model with hidden units h and
data v is defined by its prior p(h) and its likelihood p(v | h). The posterior p(h | v) supplies the
input representation of a model by the posterior’s mean, median, or mode. However, the posterior
depends on the data v, therefore sparseness and non-negativity of its means cannot be guaranteed
independent of the data. Problem at coding the input by generative models is the data-dependency
of the posterior means.

Therefore we use the posterior regularization method (posterior constraint method) |Ganchev et al.
[2010], |Graca et al.|[2009} |2007]]. The posterior regularization framework separates model charac-
teristics from data dependent characteristics like the likelihood or posterior constraints. Posterior
regularization incorporates data-dependent characteristics as constraints on model posteriors given
the observed data, which are difficult to encode via model parameters by Bayesian priors.

A generative model with prior p(h) and likelihood p(v | h) has the full model distribution p(h, v) =
p(v | h)p(k). It can be written as p(h,v) = p(h | v)p(v), where p(h | v) is the model posterior
of the hidden variables and p(v) is the evidence, that is, the likelihood of the data to be produced
by the model. The model family and its parametrization determines which structures are extracted
from the data. Typically the model parameters enter the likelihood p(v | h) and are adjusted to the
observed data. For the posterior regularization method, a family Q of allowed posterior distributions
is introduced. Q is defined by the expectations of constraint features. In our case the posterior means
have to be non-negative. Distributions Q) € Q are called variational distributions (see later for using
this term). The full variational distribution is Q(h,v) = Q(h | v)p,(v) with Q(h | v) € Q. The
distribution p, (v) is the unknown distribution of observations as determined by the world or the data
generation process. This distribution is approximated by samples drawn from the world, namely the
training samples. p(h, v) contains all model assumptions like the structures used to model the data,
while Q(h,v) contains all data dependent characteristics including data dependent constraints on
the posterior.

The goal is to achieve Q(h,v) = p(h,v), to obtain (1) a desired structure that is extracted from
the data and (2) desired code properties. However in general it is to achieve this identity, therefore
we want to minimize the distance between these distributions. We use the Kullback-Leibler (KL)
divergence [Kullback and Leibler| [[1951]] Dk1, to measure the distance between these distributions.
Therefore our objective is Dkr,(Q(h,v) || p(h,v)). Minimizing this KL divergence (1) extracts the
desired structure from the data by increasing the likelihood, that is, p, (v) ~ p(v), and (2) enforces
desired code properties by Q(h | v) ~ p(h | v). Thus, the code derived from Q(h | v) has the
desired properties and t extracts the desired input data structures.

We now approximate the KL divergence by approximating the expectation over p, (v) by the empir-
ical mean of samples {v} = {v1,...,v,} drawn from p,(v):

Dir(@v) [ plhv) = [ Qb (( m)) dh dv 73)

/pv /Qh|v ((h ))dhd

Nl vV; 062(71]
N”;/HQ(M i) log iy AP
1 n
- ;/]{Q(h|'vz) logcf)(())dh-i- — ;bgpv v;i) .

The last term + ZZ 1 log p,,(v;) neither depends on @ nor on the model, therefore we will neglect
it. In the followmg, we often abbreviate Q(h | v;) by Q(h;) or write Q(h; | v;), since the hidden
variable is based on the observation v;. Similarly we often write p(h;, v;) instead of p(h, v;) and
even more often p(h; | v;) instead of p(h | v;).
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We obtain the objective F (to be maximized) of the posterior constraint method |Ganchev et al.
[2010]], Graca et al.|[2009, 2007]:

f—;immm_;immwmmwwm (74)
- 53 st an — 13- [ am) s 240 an
_ _% i}/@(hi) log pgj’“)l) dh;
nonumber = —% Z / Q(h;) log %Zi)) dh; + — Z / Q(h;) logp(v; | k) dh; (75)

:%Z/Q ) logp(v; | ) dh ffzm@ ) Il p(ha)) -

The first line is the negative objective of the posterior constraint method while the third line is the
negative Eq. without the term £ 3" | log p, (v;).

F is the objective in our framework which has to be maximized. Maximizing F (1) increases the
model likelihood £ 3" | log p(v;), (2) finds a proper input representation by small Dk, (Q(h;) ||
p(h; | v;)). Thus, the data representation (1) extracts structures from the data as imposed by the
generative model while (2) ensuring desired code properties via @ € Q.

In the variational framework, () is the variational distribution and F is called the negative free energy
Neal and Hinton| [[1998]]. This physical term is used since variational methods were introduced for
quantum physics by Richard Feynman |Feynman|[1972]. The hidden variables can be considered as
the fictive causes or explanations of environmental fluctuations [Friston| [2012].

If p(h | v) € Q, then Q(h | v) = p(h | v) and we obtain the classical EM algorithm. The EM
algorithm maximizes the lower bound F on the log-likelihood as seen at the first line of Eq.
and ensures in its E-step Q(h | v) = p(h | v).

7 Generalized Alternating Minimization

Instead of the EM algorithm we use the Generalized Alternating Minimization (GAM) algorithm
Gunawardana and Byrne| [2005] to allow for gradient descent both in the M-step and the E-step. The
representation of an input by a generative model is the vector of the mean values of the posterior,
that is, the most likely hidden variables that produced the observed data. We have to modify the
E-step to enforce variational distributions which lead to sparse codes via zero values of the com-
ponents of its mean vector. Sparse codes, that is, many components of the mean vector are zero,
are obtained by enforcing non-negative means. This rectification is analog to rectified linear units
for neural networks, which have enabled sparse codes for neural networks. Therefore the varia-
tional distributions are restricted to stem from a family with non-negative constraints on the means.
To impose constraints on the posterior is known as the posterior constraint method Ganchev et al.
[2010], |Graca et al.| [2009} 2007]]. The posterior constraint method maximizes the objective both
in the E-step and the M-step. The posterior constraint method is computationally infeasible for our
approach, since we assume a large number of hidden units. For models with many hidden units, the
maximization in the E-step would take too much time. The posterior constraint method does not
support fast implementations on GPUs and stochastic gradients, which we want to allow in order to
use mini-batches and dropout regularization.

Therefore we perform only one gradient descent step both in the E-step and in the M-step. Unfor-
tunately, the convergence proofs of the EM algorithm are no longer valid. However we show that
our algorithm is a generalized alternating minimization (GAM) method. Gunawardana and Byrne
showed that the GAM converges |Gunawardana and Byrne|[2005] (see also [Wu [[1983]]).

The following GAM convergence Theorem [] is Proposition 5 in [Gunawardana and Byrne| [2005]]
and proves the convergence of the GAM algorithm to a solution that minimizes —F.
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Theorem 4 (GAM Convergence Theorem). Let the point-to-set map ¥ B the composition B o F of
point-to-set maps F : D x ® — D x @ and B : D x ©® — D x ©. Suppose that the point-to-set
maps ¥ and B are defined so that

(1) F and B are closed on D' x ©
(2) F(D' x ©) C D x © and B(D' x ®) CD x ©
Suppose also that ¥ is such that all (Q'y,0") € F(Qx, 0) have 8’ = 0 and satisfy

(GAM.F):  Dxr(Q | px:0) < Dxn(Qx |l px;0)
with equality only if

(EQ.F):  Qx = arg min Dxr(Q% || px;e)
QY eD

with Qx being the unique minimizer. Suppose also that the point-to-set map B is such that all
(Q%,0') € B(Qx,0) have Q' = Qx and satisfy

(GAM.B): D1 (Q@x || pxi0) < Dxn(@x || pxi0)
with equality only if
(EQ.B): 0 c arg gggDKL(QX | Pxie) -
Then,

(1) the point-to-set map FB is closed on D' x ©
(2) FB(D'x©®)CDx0O

and F'B satisfies the GAM and EQ conditions of the GAM convergence theorem, that is, Theorem 3
in|Gunawardana and Byrne|[2005|].

Proof. See Proposition 5 in|Gunawardana and Byrne|[2005]]. O

The point-to-set mappings allow extended E-step and M-steps without unique iterates. Therefore,
Theorem E]holds for different implementations, different hardware, different precisions of the algo-
rithm under consideration.

For a GAM method to converge, we have to ensure that the objective increases in both the E-step
and the M-step. @ is from a constrained family of variational distributions, while the posterior and
the full distribution (observation and hidden units) are both derived from a model family. The model
family is a parametrized family. For our models (i) the support of the density models does not depend
on the parameter and (ii) the density models are continuous in their parameters. GAM convergence
requires both (i) and (ii). Furthermore, both the E-step and the M-step must have unique maximizers
and they increase the objective if they are not at a maximum point.

The learning rules, that is, the E-step and the M-step are closed maps as they are continuous func-
tions. The objective for the E-step is strict convex in all its parameters for the variational distri-
butions, simultaneously [Dredze et al.| [2008} |2012]. It is quadratic for the mean vectors on which
constraints are imposed. The objective for the M-step is convex in both parameters W and ¥—!
(we sometimes estimate ¥ instead of ¥ ~1). The objective is quadratic in the loading matrix W.
For rectifying only, we guarantee unique global maximizers by convex and compact sets for both
the family of desired distributions and the set of possible parameters. For this convex optimization
problem with one global maximum. For rectifying and normalizing, the family of desired distribu-
tions is not convex due to equality constraints introduced by the normalization. However we can
guarantee /local unique maximizers.

Summary of the requirements for GAM convergence Theorem 4}

1. the learning rules, that is, the E-step and the M-step, are closed maps,
2. the parameter set is compact,
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3. the family of variational distributions is compact (often described by the feasible set of
parameters of the variational distributions),

. the support of the density models does not depend on the parameter,
. the density models are continuous in the parameters,

. the E-step has a unique maximizer,

. the E-step increases the objective if not at the maximizer,

. the M-step has a unique maximizer (not required by Theorem ),

O 0 9 N U B~

. the M-step increases the objective if not at the maximizer.

The resulting model from the GAM procedure is at a local maximum of the objective given the model
family and the family of variational distributions. The solution minimizes the KL-distance between
the family of full variational distributions and full model family. “Full” means that both the observed
and the hidden variables are taken into account, where for the variational distributions the probability
of the observations is set to 1. The desired family is defined as the set of all probability distributions
that assign probability one to the observation. In our case the family of variational distributions
is not the desired family since some distributions are excluded by the constraints. Therefore the
solution of the GAM optimization does not guarantee stationary points in likelihood |Gunawardana
and Byrne|[2005]]. This means that we do not maximize the likelihood but minimize the KL-distance
between variational distributions and model.

8 Gradient-based M-step

8.1 Gradient Ascent

The gradients in the M-step are:
1 n 1 n
E=— v 'v,EL(h) — — > ¥ 'WE,(h; R
Vw 5 ; v; Eg (hi) n ; o D)
and

R S N Ly — Wh) (o — WhT o-1
Vol = —5¥ +2n;EQ(\I’ (vi — Why) (v; — Why)" & ) (76)

Alternatively, we can estimate U1 which leads to the derivatives:

1 1 & T
Vo€ = S - ﬁ;EQ ((v,» ~ Why) (vi — Wh)) ) . 77)

Scaling the gradients leads to:

1 & 1<
2VwE = &1 gE v EL (hy) — T7'W EE Eq (h; h]) (78)
i=1 1=1

and

2Veé = (79)
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or
2Vg-1E = (80)

Only the sums

U = g 1:2 - 'UZEQ (hl) (81)
and
B l n 7
S = 5 2 Ea(hihl) (82)

must be computed for both gradients.

C = Zvi vl (83)
i=1

is the estimated covariance matrix (matrix of second moments for zero mean).

S|

The generalized EM algorithm update rules are:

S w0 (84)
i=1

S|

i = W (WWT 4+ 9) v = (I+ WIe W) wWie oy,
R=T-W (WwW’ +9)"W = (I+wW'e'lw)

Eq (hi) = pi
Eq (hihl) = pip] + =
1 n

_ 1y BT
S = n;EQ(h,hi)

M-step: (85)
AW =9'U -9 'WwW S
AV = — ' 4+ N (C-UW - WU+ WSWHe !,

8.2 Newton Update

Instead of gradient ascent, we now consider a Newton update step. The Newton update for finding
the roots of % is
Unt+1 = Up — 7N H_l vvf(vn) 5 (86)

where 7 is a small step size and H is the Hessian of f with respect to v evaluated at v,,. We denote
the update direction by

Av = —H 'V, f(v,). (87)
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8.2.1 Newton Update of the Loading Matrix

Theorem 5 (Newton Update for Loading Matrix). The M-step objective £ is quadratic in W, thus
convex in W. The Newton update direction for W in the M-step is

AW =US! - w. (88)

Proof. The M-step objective is the expected reconstruction error £, which is according to Eq. (39)
1

S Z/ QUha) Tog (plv: | b)) dhs = o (m log (27) + log| ¥ (89)

+ T (P710) — 2Tx (BTWUT) 4+ T (WTRTIWS) )
where Tr gives the trace of a matrix. This is a quadratic function in W, as stated in the theorem.
The Hessian Hyy of (2€) with respect to W' as a vector is:
dvec (2VwE)  Ovec (-¥'U + W S)
Ovec(W)T Avec(W)T
=Se vt

where ® is the Kronecker product of matrices. Hyy is positive definite, thus the problem is convex
in W. The inverse of Hyy is

Hy = (90)

H, =S'2®. 91)
For the product of the inverse Hessian with the gradient we have:
Hylvec(— 0 'U + 'WS) = vec(¥ (-¥'U + T 'WS)S™) (92
:vec(—U.S'_1 + W) .
If we apply a Newton update, then the update direction for W in the M-step is
AW =US! - W, (93)
O

This is the exact EM update if the step-size 7 is 1. Since the objective is a quadratic function in W,
one Newton update would lead to the exact solution.

8.2.2 Newton Update of the Noise Covariance

We define the expected approximation error by
E=C-UW' - WU + WSW7” (94)

- ZEQ( ~ Why) (v; — Whi)T) .

W as parameter.

Theorem 6 (Newton Update for Noise Covariance). The Newton update direction for ¥ as param-
eter in the M-step is

AP = FE — ¥ (95)
An update with AW (1) = 1) leads to the minimum of the M-step objective E.

Proof. The M-step objective is the expected reconstruction error £, which is according to Eq. (33)
1
= —72/ Q(h;) log (p(v; | hy)) dh; = 5(m10g(27r)+10g|‘1’\ (96)

+ T ($710) - 2T (BT WUT) + T (WIRTIWS) )
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where Tr gives the trace of a matrix.
Since
2Vgé = 91 — O lED ! 97)
is
v =F (98)
the minimum of £ with respect to W. Therefore an update with AW = E — W leads to the minimum.

The Hessian Hg of (2£) with respect to ¥ as a vector is:

9 vl - g lEp-!
He — Ovec (2 prTg) _ Vec( = ) 99)
Ovec(WP) Ovec(W)

=—¥¢'ev '+ 'e (T'EY) + (T'EY) @ .

The expected approximation error E is a sample estimate for W, therefore we have ¥ ~ FE. The
Hessian may not be positive definite for some values of E, like for small values of E. In order to
guarantee a positive definite Hessian, more precisely an approximation to it, for minmization, we set

E =% (100)
and obtain
Hy =9 ! ot (101)
We derive an approximate Newton update that is very close to the Newton update.
The inverse of the approximated H is

Hy' =¥ o v. (102)

For the product of the inverse Hessian with the gradient we have:
Hg'vec (7! — 'E¥ ') = vec (¥ (! — ¢ 'E¥ ') ¥) (103)
=vec(¥ — E) .

If we apply a Newton update, then the update direction for ¥ in the M-step is
AV = FE — . (104)
This is the exact EM update if the step-size i is 1. [

P! as parameter.

Theorem 7 (Newton Update for Inverse Noise Covariance). The M-step objective £ is convex in
W, The Newton update direction for W~ as parameter in the M-step is

AP =9t g lERL (105)
A first order approximation of this Newton direction for ¥ in the M-step is
AV = FE — . (106)
An update with AW (1) = 1) leads to the minimum of the M-step objective E.

Proof. The M-step objective is the expected reconstruction error £, which is according to Eq. (39)
1 ¢ 1

g— =t Z/ Q(h:) log (p(v: | h)) dhi = - (m log (2r) + log| | (107)
n im1 R! 2

+ T (P710) — 2Tx (BTWUT) 4+ T (WTRTIWS) )

where Tr gives the trace of a matrix.
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Since
2Vg1€& =-¥ + FE (108)
is
v =F (109)

the minimum of £ with respect to ¥~1. Therefore an update with AW = E — W leads to the

minimum.

The Hessian Hyg -1 of (2€) with respect to ¥~ as a vector is:

" _ Ovec(2Vg-1E)  Ovec(— ¥ + E)
LA ovec(-HT — Jvec(¥-1)T

=U Q v. (110)
Since the Hessian is positive definite, the E-step objective £ is convex in ¥~!, which is the first
statement of the theorem.

The inverse of Hg -1 is

H)', =3¢ '@ o', (111)

For the product of the inverse Hessian with the gradient we have:
Hy' vec(—¥ + E) = vec(¥' (-¥ + E)¥ ) (112)
=vec(—C '+ ¥TTE®) .

If we apply a Newton update, then the update direction for ¥ ~! in the M-step is
AT =0 — T EET (113)

We now can approximate the update for ¥ by the first terms of the Taylor expansion:

1

T+ AT = (T 4+ AT ) m ¥ - VAT T, (114)

We obtain for the update of ¥
AU = —TAY 10 = F — 0. (115)
This is the exact EM update if the step-size ) is 1. [

The Newton update derived from W~ as parameter is the Newton update for ¥. Consequently, the
Newton direction for both ¥ and ¥~! is in the M-step

AV = E — ¥ (116)

9 Gradient-based E-Step

9.1 Motivation for Rectifying and Normalization Constraints

The representation of data vector v by the model is the variational mean vector p1,. In order to obtain
sparse codes we want to have non-negative 1t,. We enforce non-negative mean values by constraints
and optimize by projected Newton methods and by gradient projection methods. Non-negative
constraints correspond to rectifying in the neural network field. Therefore we aim to construct
sparse codes in analogy to the rectified linear units used for neural networks.

We constrain the variational distributions to the family of normal distributions with non-negative
mean components. Consequently we introduce non-negative or rectifying constraints:

p=>0, (117)

where the inequality “>"" holds component-wise.
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However generative models with many coding units face a problem. They tend to explain away small
and rare signals by noise. For many coding units, model selection algorithms prefer models with
coding units which do not have variation and, therefore, are removed from the model. Other coding
units hardly contribute to explain the observations. The likelihood is larger if small and rare signals
are explained by noise, than the likelihood if coding units are use to explain such signals. Coding
units without variance are kept on their default values, where they have maximal contribution to the
likelihood. If they are used for coding, they deviate from their maximal values for each sample.
In accumulation these deviations decrease the likelihood more than it is increased by explaining
small or rare signals. For our RFN models the problem can become severe, since we aim at models
with up to several tens of thousands of coding units. To avoid the explaining away problem, we
enforce the selected models to use all their coding units on an equal level. We do that by keeping the
variation of each noise-free coding unit across the training set at one. Consequently, we introduce a
normalization constraint for each coding unit 1 < j <[

1 n
=3 =1, (118)
n <

i=1

This constraint means that the noise-free part of each coding unit has variance one across samples.

We will derive methods to increase the objective in the E-step both for only rectifying constraints
and for rectifying and normalization constraints. These methods ensure to reduce the objective in
the E-step to guarantee convergence via the GAM theory. The resulting model from the GAM pro-
cedure is at a local maximum of the objective given the model family and the family of variational
distributions. The solution minimizes the KL-distance between the family of full variational distribu-
tions and full model family. “Full” means that both the observed and the hidden variables are taken
into account.

9.2 The Full E-step Objective

The E-step maximizes JF with respect to the variational distribution (), therefore the E-step mini-
mizes the Kullback-Leibler divergence (KL-divergence) Kullback and Leibler| [1951]] Dx1.(Q(h) ||
p(h | v)). The KL-divergence between @ and p is

_Q(h)
DxL(Q [ p) = /Q | m dh . (119)

Rectifying constraints introduce non-negative constraints. The minimization with respect to Q(h;)
gives the constraint minimization problem'

mm Z Dxr(Q(h;) || p(hi | vi)) (120)

S.t. Vi. ni > 0
where p; is the mean vector of Q(h;).

Rectifying and normalizing constraints introduce non-negative constraints and equality constraints.
The minimization with respect to Q(h;) gives the constraint minimization problem:

1 n
min 3" D (Q(ha) | plhi | 02) (121)

Q(hi) im1
st. Vi pg >0,

1 n )
n Z Hi; = 1,
=1
where p; is the mean vector of Q(h;).

First we consider the families from which the model and from which the variational distributions
stem. The posterior of the model with Gaussian prior p(h) is Gaussian (see Section :

! 1 1
plh|v) ~ (21)72 |2, % exp <— 3 (h — pp)" 2, (R — u,,)) ) (122)

27



To be as close as possible to the posterior distribution, we restrict ) to be from a Gaussian family:

Qh) ~ (2m)H [z, exp( (h — u)" S (h - M) o a)

1
2
For Gaussians, the Kullback-Leibler divergence between @) and p is

DxiL(Q [l p) = (124)
35|

1 _ _
Q{Tr(zplzq) + (1p — Nq)T 2:pl (p — 1) — 1 — 1n|2} .
P

This Kullback-Leibler divergence is convex in the mean vector pt, and the covariance matrix 3, of
@, simultaneously Dredze et al.|[2008] 2012].

We now minimize Eq. (I24) with respect to Q. For the moment we do not care about the constraints
introduced by non-negativity and by normalization. Eq. has a quadratic form in p,, where X,
does not enter, and terms in X, where p, does not enter. Therefore we can separately minimize for
3, and for pg.

For the minimization with respect to 3,, we require

0

—1 -7
aEqTr (1'%, = =, (125)
and
9 T
For optimality the derivative of the objective Dxr, (@ || p) with respect to 3, must be zero:
0 1 1
—=D =-27T - -1 =0. 127
s, k(@ llp) = 5%, 5 2 (127)
This gives
rT=3=3,. (128)

We often drop the index g since for 1 < ¢ < n all covariance matrices X, are equal to 3J,,.

The mean vector p, of @ is the solution of the minimization problem:

.1 T «—
min 5 (upy = p)° B, (1 — 1) (129)
which is equivalent to
1 . _
mlin 3 uTﬁplu — ugzplu. (130)

The derivative and the Hessian of this objective is:

0

%DKL(Q Ip) =2, (1 — mp), (131)
52 .
%DKL(Q || p) = Ep . (132)

9.3 E-step for Mean with Rectifying Constraints
9.3.1 The E-Step Minimization Problem

Rectifying is realized by non-negative constraints. The mean vector p, of @ is the solution of the
minimization problem:

1 _
min 5 (= pp)" B, (0 = ny) (133)
st. . u > 0.
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This is a convex quadratic minimization problem with non-negativity constraints (convex feasible
set).

If A is the Lagrange multiplier for the constraints, then the dual is
.1
min o ATEA 4 pp (134)
st. A > 0.

The Karush-Kuhn-Tucker conditions require for the optimal solution for each component 1 < 5 < I:

Ajpy = 0. (135)
Further the derivative of the Lagrangian with respect to p gives
Sl -3, - A =0 (136)
which can be written as
n— pp — 3, A =0. (137)

This minimization problem cannot be solved directly. Therefore we perform a gradient projection
or projected Newton step to decrease the objective.

9.3.2 The Projection onto the Feasible Set

To decrease the objective, we perform a gradient projection or a projected Newton step. We will
base our algorithms on Euclidean least distance projections. If projected onto convex sets, these
projections do not increase distances. The Euclidean projection onto the feasible set is denoted by
P, that is, the map that takes p,, to its nearest point p (in the L?-norm) in the feasible set.

For rectifying constraints, the projection P (Euclidean least distance projection) of u, onto the
convex feasible set is given by the solution of the convex optimization problem:

.1
min 2 (= )" (= 1) (138)
st. 4 > 0.

The following Theorem [8| shows that update Eq. (139)) is the projection P defined by optimization
problem Eq. (T38).

Theorem 8 (Projection: Rectifying). The solution to optimization problem Eq. (138), which defines
the Euclidean least distance projection, is

0 for (pp); <0
= [P .= P = 139
Hi [ <Np>]] { (up)j for (pp); > 0 (159
Proof. For the projection we have the minimization problem:
o1 T
min o (= pp) (B = ) (140)
st. . u>0.
The Lagrangian L with multiplier A > 0 is
1 T
L=g5(=m) (- m -2 p (141)
The derivative with respect to p is
oL
= =pu - —A=0. 142
o L (142)

The Karush-Kuhn-Tucker (KKT) conditions require for the optimal solution that for each constraint
VK
- (143)
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If 0 < (pp); then Eq. (142) requires O < 11; because the Lagrangian J; is larger than or equal to zero:
0 < \;. From the KKT conditions Eq. follows that A; = 0 and, therefore, 0 < p1; = (pp);.
If (1p); < Othen O < pj — (p);, because the constraints of the primal problem require 0 < p;.
From Eq. (I42) follows that 0 < ;. From the KKT conditions Eq. (T43) follows that (11,,); = 0
and 0 < A\; = —(pp);. If (11p); = 0, then Eq. and the KKT conditions Eq. lead to
(p)j = pj =X =0

Therefore the solution of problem Eq. (I38) is

) (wp); for (up); >0 and A; =0
i = { 0 for (Mp)j <0 and A\; = _(Mp)j ' (144)

This finishes the proof. O

9.4 E-step for Mean with Rectifying and Normalizing Constraints
9.4.1 The E-Step Minimization Problem
If we also consider normalizing constraints, then we have to minimize all KL-divergences simulta-

neously. The normalizing constraints connect the single optimization problems for each sample v;.
For the E-step, we obtain the minimization problem:

.1 _
min = > (s = (1)) T, (s = (p)s) (145)
=1
v, >0 Vo 1 2 =1
S.t. PR L2 y ]EZNJW— .

The “>”-sign is meant component-wise. The [ equality constraints lead to non-convex feasible sets.
The solution to this optimization problem are the means vectors p; of Q(h;).

Generalized Reduced Gradient. The equality constraints can be solved for one variable which is
then inserted into the objective. The equality constraint gives for each 1 < 5 < I:

(146)

These equations can be inserted into the objective and, thereby, we remove the variables ;. We
have to ensure that the p1; exist by

D oui < (147)

These constraints define a convex set feasible set. To solve the each equality constraints for a variable
and insert it into the objective is called generalized reduced gradient method |Abadie and Carpentier
[1969]. For solving the reduced problem, we can use methods for constraint optimization were we
now ensure a convex feasible set. These methods solve the original problem Eq. (I43). We only
require an improvement of the objective with a feasible value. For the reduced problem, we perform
one step of a gradient projection method.

Gradient Projection Methods. Also for the original problem Eq. (143)), gradient projection meth-
ods can be used. The gradient projection method has been generalized by Rosen to non-linear con-
straints Rosen| [1961] and was later improved by [Haug and Aroral [1979]. The gradient projection
algorithm of Rosen works for non-convex feasible sets. The idea is to linearize the nonlinear con-
straints and solve the problem. Subsequently a restoration move brings the solution back to the
constraint boundaries.
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9.4.2 The Projection onto the Feasible Set

To decrease the objective, we perform a gradient projection, a projected Newton step, or a step of the
generalized reduced method. We will base our algorithms on Euclidean least distance projections.
If projected onto convex sets, these projections do not increase distances. The Euclidean projection
onto the feasible set is denoted by P, that is, the map that simultaneously takes {(gt,,); } to the nearest
points {g;} (in the L?-norm) in the feasible set.

For rectifying and normalizing constraints the projection (Euclidean least distance projection) of
{(pp)i} onto the non-convex feasible set leads to the optimization problem

1 $

min = 3 (mi = (mp)i)" (i — (11p)o) (148)
‘ i=1

st Vi >0,

1 n
\ZE -~ Zu?j =1.
i=1

. T . .
By using (pt; — (pp)i)” (i — (1p)i) = p i —2p7 (pp)i+ ()7 (pp )i, we see that the objective
contains the sum ), y ufj. The constraints enforce this sum to be constant. Therefore inserting the

equality constraints into the objective, optimization problem Eq. (T48) is equivalent to

. 1<
min — — > u (w); (149)
i n —
st. Vit >0,
I &,

i=1

The following Theorem [9] shows that updates Eq. (I50) and Eq. (I5I)) form the projection defined
by optimization problem Eq. (T48).

Theorem 9 (Projection: Rectifying and Normalizing). If at least one (f1p);; is positive for 1 < j <
I, then the solution to optimization problem Eq. (148), which defines the Euclidean least distance
projection, is

R 0 for  (pp)i; < 0

= 150

f {mp)m« for (p)i; > 0 (150
[)/ij

pig = Pl(pp))], = ————e.
NED i

Ifall ()5 are non-positive for 1 < j < I, then the optimization problem Eq. (148)) has the solution

[ Vn for j = argmax;{(up);:}
Hij = { 0 otherwise ! o 1)

Proof. In the following we show that updates Eq. (I50) and Eq. (I50) are the projection onto the
feasible set. For the projection of {(u,);} onto the feasible set, we have the minimization problem:

n

. 1
min - Z(Nz‘ — (mp)i)" (i — (pap)s) (152)
‘ i=1
s.t vl 1223 > 07
1 o o
v] ﬁ 2”1] =1
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The feasible set is non-convex because of the quadratic equality constraint. The Lagrangian with
multiplier A > 0 is

1 n
L=~ Z(Hi — ()" (i — (pap)i) — Z)\ZT M (153)
j i=1
. 1\ 2 1
+ ZT] o Zuij — .
J 1=1
The Karush-Kuhn-Tucker (KKT) conditions require for the optimal solution:

1 n
Nij ij = 0 and T (n > uy - 1) =0. (154)
=1

The derivative of L with respect to p;; is

oL 2 2
= (uij = (kp)ig) — Aig + — 1y = 0. (155)

Opii
We multiply this equation by y;; and obtain:

2 2
- (135 = (p)ij mag) — Nij pag + T py = 0. (156)

The KKT conditions give A;ju;; = 0, therefore this term can be removed from the equation. Next
We sum over i:

. Z iy = (mplij pag) + = ij pi = 0. (157)

=1

Using the equality constraint 1/n >, ufj = 1 and dividing by 2 and gives:

1 n
;Zup ij Mij +T] =0. (158)
Solving for 7; leads to:
1 n
o= > (p)ij i — 1. (159)
i=1
We insert 7; into Eq. (I53)
n 1 &
= (p)ij — §>\z‘j + n Z Hp)sj tsj | Hij = 0. (160)
s=1
We immediately see, that if 11;; = 0 then (p1,);; = — 5 i; < 0. Therefore we can assume f1;; > 0.
Multiplying Eq. (I60) with 1;; and using the KKT conditions gives
1 2
— (Kp)ij bij + - Z(Mp)sj Bsj | niy; = 0. (161)
s=1

Therefore (1,)i;pi; and 2 3" (11,,)s;445; have the same sign or j;; = 0. Since 0 < p1;;, we de-
duce that (y,);; and £ ZS 1 (1) sjtsj have the same sign or p;; = 0. Since the sum is independent
of 4, all (), with ,uz] > 0 have the same sign for 1 < i < n. Solving Eq. (T60) for x;; gives
(kp)ij + 5Aij
w2 (Hp)sy s

Wij = (162)
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L If all (1 )i; are non-positive for 1 < j <, then the sum S (1p)sjttsj is negative. From the
first order derivative of the Lagrangian in Eq. (I33)), we can compute the second order derivative

2L 2 2 -
3#71;‘8#11]‘ n n J ;( P)J J

We inserted the expression of Eq. (I539) for 7;. Since all mixed second order derivatives are zero,
the (projected) Hessian of the Lagrangian is diagonal with negative entries. Therefore it is strict
negative definite. Thus, the second order necessary conditions cannot be fulfilled. The minimum is
a border point of the constraints.

For each j for which all (u,);; are non-positive for 1 < j < [, optimization problem Eq.
defines a plane that has a normal vector in the positive orthant (hyperoctant). For such a j the corre-
sponding equality constraint defines a hypersphere. Minimization means that the plane containing
the solution is parallel to the original plane and should be as close to the origin as possible. If we
move the plane parallel from the origin into the positive orthant, then the first intersection with the
hypersphere is

_fn for J = argmax;{(up);;}
Hij = { 0 otherwise ! o (164)

This is the solution for p;; with 1 < j <[ to our minimization problem.

IL If one (u,);; is positive, then from Eq. with this (11,);; follows that = 3" (1)) 551155 18
positive, otherwise Eq. (I60) has only negative terms on the left hand side. In particular, the second
order necessary conditions are always fulfilled as Eq. (I63) is positive. For (p,);; < 0 it follows
from Eq. that \;; > 0 and from the KKT conditions that y;; = 0. For (u,);; > 0 it follows
from Eq. (I60) that 41;; > 0 and from the KKT conditions that \;; = 0. Therefore we define:

. 0 for (up)i; <0
Hij { (tp)ij for  (up)ij > 0 (165)
We write the solution as
fli .
Wij = m = ay [Lij - (166)
! % Y a1 (Hp)sj fhs; s

We now use the equality constraint:

1 n ) ) 1 n >
gzﬂw = EZMU =1. (167)
i=1 =1
Solving for «; gives:
1
aj = T (168)
\/ n Zi:l ﬂ?j
Therefore the solution is
Hij (169)

This finishes the proof.

9.5 Gradient and Scaled Gradient Projection and Projected Newton

9.5.1 Gradient Projection Algorithm

The projected gradient descent or gradient projection algorithm Bertsekas| [[1976]], Kelley| [[1999]]
performs first a gradient step and then projects the result to the feasible set. The projection onto the
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feasible set is denoted by P, that is, the map that takes g into the nearest point (in the L?-norm)
in the feasible set to p. The feasible set must be convex, however later we will introduce gradient
projection methods for non-convex feasible sets.

The gradient projection method is in our case

prer = P (e + A3, (p — pi)) (170)

The Lipschitz constant for the gradient is ||, ||s = emax(X, "), the largest eigenvalue of 3!
The following statement is Theorem 5.4.5 in |Kelley| [[1999].

Theorem 10 (Theorem 5.4.5 in Kelley|[1999]). The sufficient decrease condition

Dxn(Q(prt1) | p) — Dxu(@(ur) | p) < _Talluk — e (171
(e.g. with o = 10™*) holds for all X such that
0 <A< 2(17_??. 172)
emax(zp )
Proof. See|Kelley|[[1999]. O]

Theorem |10 guarantees that we can increase the objective by gradient projection in the E-step,
except the case where we already reached the maximum.

For a fast upper bound on the maximal eigenvalue we use

emax(Z, 1) < Tr(Z, 1) (173)
and
emax(E, 1) < (WISl — 1, (174)
where the latter follows from
=1+ We'w., (175)

Improved methods for finding an appropriate A by line search methods have been proposed Birgin
et al| [2000], [Serafini et al.|[2005]. We use a search with A = B¢ witht = 0,1,2,...and 8 = 27!
orf=10"1

A special version of the gradient projection method is the generalized reduced method |Abadie and
Carpentier| [[1969]]. This method is able to solve our optimization problem with equality constraints.
The gradient projection method has been generalized by Rosen to non-linear constraints Rosen
[1961]. The gradient projection algorithm of Rosen can also be used for a region which is not
convex. The idea is to linearize the nonlinear constraints and solve the problem. Subsequently a
restoration move brings the solution back to the constraint boundaries. Rosen’s gradient projection
method was improved by Haug and Aroral [1979]. These methods guarantee that we can increase
the objective in the E-step for non-convex feasible sets, except the case where we already reached
the maximum. These algorithms for non-convex feasible sets will only give a local maximum. Also
the GAM algorithm will only find a local maximum.

9.5.2 Scaled Gradient Projection and Projected Newton Method

Both the scaled gradient projection algorithm and the projected Newton method were proposed in
Bertsekas|[[1982]]. We follow Kelley|[[1999].

The idea is to use a Newton update instead of the a gradient update:
prer = P (e + NH VS, (up — ) - (176)

H ! can be an arbitrary strict positive definite matrix. If we set H ~! = 3, then we have a Newton
update of the projected Newton method Bertsekas| [[1982]. For A = 1 we obtain

e = Py . (177)
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otherwise

Brer1 = P((1 = Npe + App) - (178)
The search direction for the unconstrained problem can be rotated by H ~! to be orthogonal to the
direction of decrease in the inactive directions for the constrained problem.

To escape this possible problem, an e-active set is introduced which contains all j with p; < e. All
columns and rows of the Hessian having an index in the e-active set are fixed to e;. After sorting
the indices of the e-active set together, they form a block which is the sub-identity matrix. H is set
to the Hessian X, where the e-active set columns and rows are replaced by unit vectors.

The following Theorem [T1]is Lemma 5.5.1 in [Kelley| [1999]. Theorem[I1]states that the objective
decreases using the reduced Hessian in the projected Newton method for convex feasible sets.

Theorem 11 (Lemma 5.5.1 in Kelley|[1999]). The sufficient decrease condition

DxL(Q(pri1) | p) — Du(Q(ue) ) < — o (e — pp)" B, (e — peyr)  (179)
holds for all \ smaller than a bound depending on H and e.

Proof. See Kelley|[[1999]. O

In practical applications, a proper A is found by line search. The projected Newton method uses
A =1 to set € Bertsekas| [[1982]:

€ = llux — Pup) - (180)

9.5.3 Combined Method

Following Kim et al.| [2006], |Serafin1 et al.[[2005] we use the following very general update rule,
which includes the gradient projection algorithm, the scaled gradient projection algorithm, and the
projected Newton method.

We use following update for the E-step:
disr = P + NH 'S (1, — ) (181)
i1 = Ppe + v (dey1 — pr)) -

We have to project twice since the equality constraint produces a manifold in the parameter space.

We iterate this update until we see a decrease of the objective in the E-step:

Dx1.(Qr+1 || p) — Dxn(Qk [[p) < 0. (182)
For the constraints we have only to optimize the mean vector p to ensure
DxrL(Q(pr+1) [ p) — Dxu(Q(pr) [ p) < 0. (183)
Even
Dxrn(Q(pr+1) | p) = Dxn(Q(pr) | p) (184)
can be sufficient if minimizing ¥, = X, ensures
Dxr(Qr+1 [ p) < Dxr(Qk [l p) - (185)
We use following schedule:
. eH'=3,
e \=1
e v=1
That is
prer = Ppp) - (186)
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2. e H‘lep

e \=1
o v€(0,1]
That is
prt1 = P((L — ) pe + 7P (kp)) - (187)
3. e H 1= 3,
e \e(0,1]
o v=1
That is
prrr = P((1 = Npe + App) (188)
4. e H ! = 3,
o \e(0,1]
e v=c (0,1]
That is
per1 = P((1 — ) pe + yP((1 = Npe + App)) - (189)
5. ¢« H'=R(Z,)
e A e (0,1]
e v=€(0,1]

R(X,) denotes the reduced matrix (Hessian or a positive definite) according to the pro-
jected Newton method or the scaled gradient projection algorithm. For convex feasible sets
we can guarantee at this level already an increase of the objective at the E-step.

6. e H'=1
e A e (0,1]
e v =€ (0,1]
This is the gradient projection algorithm. In particular we include the generalized reduced
method and Rosen’s gradient projection method. At this step we guarantee an increase of

the objective at the E-step even for non-convex feasible sets because we also use complex
methods for constraint optimization.

Step 5. ensures an improvement if only using rectifying constraints according to the theory of
projected Newton methods [Kelley| [[1999]. Step 6. ensures an improvement if using both rectifying
constraints and normalizing constraints, because we use known methods for constraint optimization.
To set pp+1 = py is sufficient to increase the objective at the E-step if X5, = X, decreases the
KL divergence. However we will not always set g5 11 = py to avoid accumulation points outside
the solution set.

10 Alternative Gaussian Prior

We assume h is Gaussian with covariance M and mean &
h ~ N (M) . (190)
We derive the posterior for this prior.

The likelihood is Gaussian since a affine transformation of a Gaussian random variable is again
a Gaussian random variable and the convolution of two Gaussians is Gaussian, too. Thus, v =
W h + € is Gaussian if h and € are both Gaussian. For the prior moments we have

E(h) = €, (191)
E(hhT) = M + €¢7 (192)
var(h) = M (193)
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and for the likelihood of v we obtain the moments

E(v) = WE, (194)

E(wvT) = WEMBh) WT + ¥ (195)
=WMW?' + & 4+ weetwh |

var(v) = WM WT + &, (196)

We need some algebraic identities to derive the posterior. The Woodbury matrix identity gives

M-MW' WMWT + &) ' WM = (M +we'w)" . 197
Multiplying this equation from the left hand side with ¥~ W gives

vw (M + whelw) (198)

— U WM - WMW (WMWT + %) WM

— VI (WMW. +9) (WMW” +9) ' WM -

TWMWT (WMWT + ) WM

— (@ WMW?T +®) - WMWT) ( WMWT + %) WM

- WMWT + %) WM.
It follows that

1

MW" (WWT + %) a=(M"'+We'w) wWie'la. (199)

The posterior p(h | v) is derived from Gaussian conditioning because both the likelihood p(v)
and the prior p(h) are Gaussian distributed. The conditional distribution p(a | b) of two random
variables a and b that both follow a Gaussian distribution is a Gaussian:

a~ N(pa,Xaa) (200)
b ~ N (my, Zep) (201)
e = Cov(b,a), (202)
Y = Cov(a,bd), (203)
alb ~ N(ta + ZaZy (0 - m) , Baa — ZarZy, Sea) - (204)
Therefore we need the second moments between v and h:
E(vhT) = E(WhhT) + E(eh?) = W (M + ¢¢7). (205)
The covariances between v and h are
Cov(v,h) = E(vh') — E(v)E(hT) (206)
= WM+ WeeT — Weel = WM,
Cov(h,v) = E(hv"T) — E(M)E(®wT)= M WT. (207)

Thus, the mean of p(h | v) is
Pro =&+ MW (WMW?' + )" Y(v — W§) (208)
— ¢+ (M + WIeT'W) T WTe (v + WE)
= (M + WIew) T (M WTeT W) ¢
+ (M + W' W) T W (v — W)
= (M whetw)
(M7 e+ WIo'wWe + Wio o - WIe W)
= (M + W W) (Wl e + Mg .

37



The covariance matrix of p(h | v) is
Sho = M — MWT (WMWT + 9)7 WM (209)
- (M + Wi lw)

In particular, the variable £ may be used to enforce more sparseness by setting its components to
negative values. Since the covariance matrix Xy, ,, is positive semi-definite, we ensure that

7 (M + WTe'w) T £ > 0. 210)
If £ = —p1 (1 is the vector with all components being one), then the largest absolute components
of 3p,|,& must be negative. Thus, & = —p1 leads to sparser solutions.

11 Hyperparameters Selected for Method Assessment

The performance of rectified factor networks (RFNs) as unsupervised methods for data representa-
tion was compared with:

(1) RFN: rectified factor networks,

(2) RFNn: RFNs without normalization,

(3) DAE: denoising autoencoders with rectified linear units,

(4) RBM: restricted Boltzmann machines with Gaussian visible units and hidden binary units,

(5) FAsp: factor analysis with Jeffrey’s prior (p(z) o< 1/z) on the hidden units which is sparser than
a Laplace prior,

(6) FAlap: factor analysis with Laplace prior on the hidden units,

(7) ICA: independent component analysis by FastICA Hyvarinen and Oja|[[1999],

(8) SFA: sparse factor analysis with a Laplace prior on the parameters,

(9) FA: standard factor analysis,

(10) PCA: principal component analysis.

The number of components are fixed to 50, 100, or 150 for each method. The used hyperparameters
are listed in Tab. 1}

Table 1: Hyperparameters of all methods that were used to assess the performance of rectified factor
networks (RFN’s) as unsupervised methods for data representation.

Method Used hyperparameters

RFN {learning rate=0.1, iterations=1000}

RFNn {learning rate=0.1, iterations=1000}

DAE {corruption level=0.2, learning rate=1e-04, iterations=1000}
RBM {learning rate=0.01, iterations=1000}

FAsp {iterations=500}

FAlap {iterations=500}

SFA {Laplace weight decay factor=5e-05, iterations=500}
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12 Data Set 1

The number of components are fixed to 50, 100 or 150.

We generated nine different benchmark data sets (D1 to D9), where each data set consists of 100
instances for averaging the results. Each instance consists of 100 samples and 100 features resulting
in a 100x 100 data matrix. Into these data matrices, structures are implanted as biclusters ?. A
bicluster is a pattern consisting of a particular number of features which is found in a particular
number of samples. The size of the bicluster is given by the number of features that form the pattern
and by the number of samples in which the pattern is found. The data sets had different noise levels
and different bicluster sizes. We considered large and small bicluster sizes, where large biclusters
have 20-30 samples and 20-30 features, while small biclusters have 3—8 samples and 3-8 features.
The signal strength (scaling factor) of a pattern in a sample was randomly chosen according to the
Gaussian A (1,1). Finally, to each data matrix background noise was added, where the noise is
distributed according to a zero-mean Gaussian with standard deviation 1, 5, or 10. The data sets are
described in Tab. [2| The remaining components of the spanning outer product vectors were drawn
by N (0,0.01).

Table 2: Overview over the datasets. Shown is the background noise (“noise”), the number of large
biclusters (n1), and the number of small biclusters (ns).

Dl D2 D3 D4 D5 D6 D7 D8 D9

noise 1 5 10 1 5 10 1 5 10
n1 10 10 10 15 15 15 5 5 5
Ty 10 10 10 5 5 5 15 15 15
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13 Data Set 11

This data sets was generate as described in Section[I2] but instead of drawing the remaining compo-
nents of the spanning outer product vectors from N (0, 0.01), they were now drawn from N (0, 0.5).
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14 RFN Pretraining for Convolution Nets

We assess the performance of RFN first layer pretraining on CIFAR-10 and CIFAR-100 for three
deep convolutional network architectures: (i) the AlexNet Krizhevsky et al.| [2012], (i1) Deeply
Supervised Networks (DSN) [Lee et al.| [2014], and (iii) our 5-Convolution-Network-In-Network
(5C-NIN).

Both CIFAR datasets contain 60k 32x32 RGB-color images, which were divided into 50k train
and 10k test sets, split between 10 (CIFAR10) and 100 (CIFAR100) categories. Both datasets are
preprocessed as described in |Goodfellow et al.|[2013]] by global contrast normalization and ZCA
whitening. Additionally, the datasets were augmented by padding the images with four zero pixels
at all borders. For data augmentation, at the beginning of every epoch, images in the training set
were distorted by random translation and random flipping in horizontal and vertical directions. For
the AlexNet, we neither preprocessed nor augmented the datasets.

Inspired by |[Lin et al.|[2013[]’s Network In Network, we constructed a 5-Convolution-Network-In-
Network (5C-NIN) architecture with five convolutional layers, each followed by a 2x2 max-pooling
layer (stride 1) and a multilayer perceptron (MLP) convolutional layer. ReLUs were used for the
convolutional layers and dropout for regularization. We followed Krizhevsky| [2009] for weight
initialization, learning rates, and learning policies. The networks were trained using mini-batches of
size 100 and 128 for SC-NIN and AlexNet, respectively.

For REN pretraining, we randomly extracted 5x5 patches from the training data to construct 192
filters for DSN and 5C-NIN while 32 for AlexNet. These filters constitute the first convolutional
layer of each network which is then trained using default setting. For assessing the improvement
by RFNs, we repeated training with randomly initialized weights in the first layer. The results
are presented in Tab.[9] For comparison, the lower panel of the table reports the performance of the
currently top performing networks: Network In Network (NIN, [Lin et al.|[2013]]), Maxout Networks
(MN, |Goodfellow et al.|[2013]]) and DeepCNiN |Graham|[2014]. In all cases pretraining with RFNs
decreases the test error rate.

Table 9: The upper panel shows results of convolutional deep networks with first layer pretrained
by RFN (“RFN”) and with first layer randomly initialized (“org”). The first column gives the net-
work architecture, namely, AlexNet, Deeply Supervised Networks (DSN), and our 5-Convolution-
Network-In-Network (SC-NIN). The test error rates are reported (for CIFAR-100 DSN model was
missing). Currently best performing networks Network In Network (NIN), Maxout Networks (MN),
and DeepCNiN are reported in the lower panel. In all cases pretraining with RFNs decreased the
test error rate.

Dataset CIFAR-10 CIFAR-100
org RFN org RFN augmented
AlexNet  18.21 18.04 46.18 45.80

DSN 797 7.74 3457 - v
SC-NIN 781 7.63 29.96 29.75 v
NIN 881 - 3568 - v
MN 938 - 3857 - v
DeepCNiN 628 - 2430 - v

15 Running Times for RFN’s Projected Newton Step

In this section, we report the running times for RFN’s projected Newton step and for solving a
quadratic program using NumPy Python and CVXOPT (Python Software for Convex Optimization),
respectively. Both benchmarks were profiled with the same hardware using only the CPU. Fig. []]
shows the run times for various problem sizes in [s] both approaches. The projected Newton step
complexity per iteration is O(nl), see Fig. In contrast, a quadratic program solver typically
requires for the (nl) variables (the means of the hidden units for all samples) O(n*I*) steps to find
the minimum [Ben-Tal and Nemirovski| [2001]].
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Running Times: Newton vs. QP
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Figure 1: Running times for various problem sizes in [s] of RFN’s projected Newton step and of
quadratic program solver.
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Running Times: Newton
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Figure 2: Running times for various problem sizes in [s] of RFN’s projected Newton step.
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