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In this chapter we discuss methods for gene selection on data obtained from the

microarray technique. Gene selection is very important for microarray data, (a) as

a preprocessing step to improve the performance of classifiers or other predictors

for sample attributes, (b) in order to discover relevant genes, that is genes which

show specific expression patterns across the given set of samples, and (c) to save

costs, for example if the microarray technique is used for diagnostic purposes. We

introduce a new feature selection method which is based on the support vector

machine technique. The new feature selection method extracts a sparse set of

genes, whose expression levels are important for predicting the class of a sample

(for example “positive” vs. “negative” therapy outcome for tumor samples from

patients). For this purpose the support vector technique is used in a novel way:

instead of constructing a classifier from a minimal set of most informative samples

(the so-called support vectors), the classifier is constructed using a minimal set of

most informative features. In contrast to previously proposed methods, however,

features rather than samples now formally assume the role of support vectors.

We introduce a protocol for preprocessing, feature selection and evaluation of

microarray data. Using this protocol we demonstrate the superior performance

of our feature selection method on data sets obtained from patients with certain

types of cancer (brain tumor, lymphoma, and breast cancer), where the outcome of a

chemo- or radiation therapy must be predicted based on the gene expression profile.

The feature selection method extracts genes (the so-called support genes) which are

correlated with therapy outcome. For classifiers based on these genes, generalization

performance is improved compared to previously proposed methods.
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1.1 Introduction

Gene expression profiles obtained by the microarray technique provide a snapshot

of the expression values of some thousand up to some ten thousand genes in a

particular tissue sample. The advantage of the microarray method — namely to

monitor a large number of variables of a cell’s (or a piece of tissue’s) state, however,

often turns out to be difficult to exploit. The number of samples is small and the

level of noise is high which makes it difficult to detect the small number of genes

relevant to the task at hand. Therefore, specific gene selection methods must be

designed in order to reliably extract relevant genes.

1.1.1 Microarray Technique

The microarray technique (Southern, 1988; Lysov et al., 1988; Drmanac et al.,

1989; Bains and Smith, 1988) is a recent technique which allows to monitor the

concentration of many kinds of messenger RNA (mRNA) simultaneously in cells

of a tissue sample and provides a snapshot of the pattern of gene expression at

the time of preparation (Wang et al., 1998; Gerhold et al., 1999). The so-called

DNA microarrays allow for the first time the simultaneous measurement of several

1000 or 10,000 expression levels providing valuable information about whole genetic

networks. DNA microarrays allow to search for genes related to certain properties of

the sample tissue and to extract related genes via dependencies in their expression

pattern.

Figure 1.1 depicts the microarray procedure. Messenger RNA is extracted from

the samples (Step 1) and reversely transcribed to cDNA (Step 2). This “target”

cDNA is then coupled to a fluorescent dye (Step 3). The target cDNA is then

hybridized with a large number of probes of immobilized DNA (steps 4 and 5)

which had been synthesized and fixed to different locations of the DNA chip during

fabrication. The cDNA from the samples binds to their corresponding probes on the

chip (Step 5). After cleaning, the chip is scanned with a confocal microscope and the

strength of the fluorescent light is recorded (Step 6). Genes which are predominantly

expressed in the sample give rise to bright spots of strong fluorescent light. No

expression is indicated by weak fluorescent light. After segmentation of the stained

locations on the chip and a correction for background intensity, intensity values

are transformed to real numbers for every location (Step 7). After processing, the

data from several experiments with different samples are collected and represented

in matrix form, where columns correspond to tissue samples, rows correspond to

genes, and matrix entries describe the result of a measurement of how strong a

particular gene was expressed in a particular sample.

Expression values as measured by the DNA microarray technique are noisy.

Firstly, there exists biological noise, because samples do not show the sameMicroarray Noise

“expression state” and exactly the same levels of mRNA even if they belong to the

same class or the same experimental condition. Then there is noise introduced by
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the microarray measurement technique. Sources of noise include tolerances in chip

properties which originate from the fabrication process, different efficiencies for the

mRNA extraction and the reverse transcription process, variations in background

intensities, nonuniform labeling of the cDNA targets (the dye may bind multiple

times and with different efficiencies), variations in the dye concentration during

labeling, pipette errors, temperature fluctuations and variations in the efficiency

of hybridization, and scanner deviations. The effect of measurement noise can

be reduced by averaging over multiple measurements using the same sample but

usually remains large. Measurement noise is not always Gaussian. Hartemink et al.

(2001) for example found that the measurement noise distribution of the logarithmic

expression values has heavy tails.

1.1.2 Gene Selection for Microarrays

Gene selection aims at three goals:

(a) data preprocessing in order to improve the prediction quality of machineWhy

Gene/Feature

Selection?

learning approaches,

(b) identification of indicator genes (this would aid the interpretation and under-

standing of the data), and

(c) reducing costs, if microarray data are used for example for diagnostic purposes.

Item (a) is an important issue in machine learning if the input dimension is

larger than the number of samples. Kohavi and John (1997) for example found

that decision tree approaches like ID3 (Quinlan, 1986), CART (Breiman et al.,

1984), and C4.5 (Quinlan, 1993), as well as instance-based (for example K-nearest

neighbor) methods, degrade in performance when the number of features is larger

than a minimal set of relevant features. The Naive-Bayes method is reported to

be more robust to irrelevant features but the prediction accuracy decreases if

correlated features are present. Also Kittler (1986) observed decreasing performance

of machine learning methods for large feature sets.

The reduction in performance for data sets with many attributes is known as the

“curse of dimensionality” (Bellman, 1961). According to Stone (1980), the numberCurse of

Dimensionality of training examples has to increase exponentially with the number of dimensions

in order to ensure that an estimator also performs well for higher dimensional

data. Otherwise overfitting (high variance in model selection) occurs, that is fitting

of the selected model to noise in the training data. On the other hand, if the

model class is chosen to be smooth so that the variance of model selection is

restricted (low overfitting), then underfitting (high bias of model selection) occurs,

that is the training data is not approximated well enough. The later is shown

by Friedman (1997) who demonstrated for K-nearest neighbor classifiers that the

curse of dimensionality leads to large bias. Practical applications confirm the theory:

many input dimensions lead to poor generalization performance. Fewer features on

the other hand should improve generalization for equal training error.Many, Noisy

Features with

Microarray Data
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For microarray data the situation is especially difficult because the number of

features (genes) is often more than 10 times larger than the number of examples

(tissue samples). The high level of noise additionally complicates the selection of

relevant genes of microarray data. Both facts, the large number of genes and the

presence of noise, led ?) to state that “the features selected matter more than

the classifier used” for DNA microarray data classification, a fact which will beMicroarray Data

Requires Gene

Selection

confirmed by our analysis later on.

Item (b) refers to the identification of genes whose expression values change

with the sample class. Genes which show different expression values in a control

condition when compared to the condition to analyze are useful to differentiateIdentify Genes

between these conditions and should be extracted (see Jäger et al. (2003)). The

knowledge of the relevant genes can then be exploited in two ways. Firstly, cellular

mechanisms can be understood and active pathways may be identified. Secondly,

target genes or target proteins for causing or avoiding conditions can be detected.

In medical applications both kinds of information are highly relevant for diagnosis

and drug design. Note, however, that the selection of genes for prediction and

the selection of genes whose expression levels are correlated lead to different sets.

Redundant sets of genes, which are the outcome of the latter task, may lead to a

reduced performance of the former task. On the other hand, genes selected for the

purpose of prediction may not include genes strongly correlated to each other in

order to keep the number of features small.

Item (c) refers to the costs of large scale microarray studies, for example, for

diagnostic purposes. Small gene ensembles lead to cheaper chips (fewer probes onReducing Costs

a chip), to savings in manpower (fewer experiments), and to easier interpretable

experiments (Jäger et al., 2003).

1.1.3 Feature Selection Methods to Extract Relevant Genes

In the previous subsection we stated three important reasons why it is necessary to

reduce the number of genes, that is to reduce the number of a sample’s expression

values obtained by the microarray technique. These expression values are considered

as features of the sample in the field of machine learning. In order to reduce the

number of genes and to select the most important genes, machine learning methods,

called “feature selection” methods, must be applied. Because of the special structure

of the microarray data, namely the large number of noisy features, not all previously

proposed feature selection methods are suited for the analysis of microarray data.

Feature selection methods should be able to cope with many features but few

samples, to remove redundancies, and to consider dependencies of whole subsets

of features.

To address both the suitability for and the performance on microarray data, this

chapter consists of two parts. In the first, methodological part we review previous

approaches and then derive a feature selection method, which is particularly suited

to the peculiarities of microarray data. In the second, application part we assess the

algorithms’ performance and provide benchmark results. More precise, this chapter
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is organized as follows. In Section 1.2 we review feature selection methods with

respect to their ability to address the particular constraints of microarray data.

Then we introduce the new feature selection method in Section 1.3. In Section 1.4

we describe a “gene selection protocol” which is then evaluated together with the

new feature selection method in Section 1.5. Benchmark results on microarray data

are provided using several previously described approaches.

1.2 Review of Feature Selection Methods

For simplicity let us consider a classification task where the objects to classify are

described by vectors with a fixed number of components (the features). The training

set consists of vectors which are labeled by whether the according object belongs

to a class or not and — again for reasons of simplicity — we assume that there

are only two classes. Given the training data, a classifier should be selected which

assigns correct class labels to the feature vectors. The goal of machine learning

methods is not only to select a classifier which performs well on the training set,

but which also correctly classifies new examples, that is which correctly predicts

events of the future.

There are two classes of preprocessing methods which are commonly used to

improve machine learning techniques: feature selection and feature construction

methods. Feature construction methods compute new features as a combination

of the original ones and are often used for dimensionality reduction. Many popularFeature Selection

vs. Feature

Construction

methods for feature construction are based on linear combinations of the original

features, that is on projections of data points into low dimensional spaces, like

projection pursuit (for example Friedman and Tukey (1974); Friedman and Stuet-

zle (1981); Huber (1985)), principal component analysis (PCA, for example Oja

(1982); Jolliffe (1986); Jackson (1991)), or independent component analysis (ICA,

for example Cardoso and Souloumiac (1993); Jutten and Herault (1991); Bell and

Sejnowski (1995); Hochreiter and Schmidhuber (1999); Hyvärinen et al. (2001)).

More recently nonlinear feature construction algorithms based on kernel methods

(Cristianini et al., 2002) and the information bottleneck idea (Tishby et al., 1999;

Tishby, 2001) have been proposed.

Feature selection methods, on the other hand, choose a subset of the input

components which are supposed to be relevant for solving a task and leave it to

a subsequent stage of processing to combine their values in a proper way1. In the

following we focus on feature selection, that is on the task of choosing a subset

of “informative” input components, that is components which are relevant for

predicting the class labels. The classifier is then selected using the reduced feature

vectors as the objects’ description. Therefore, only feature selection techniques

address items (b) and (c) from the previous section, that is the extraction of

1. This combination can also be done during feature selection.
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indicator genes and reducing costs2.

Review articles on feature selection have been published in a “special issue on

relevance” of the journal Artificial Intelligence (Kohavi and John, 1997; Blum and

Langley, 1997) and a “special issue on variable and feature selection” of the JournalOverview Feature

Selection of Machine Learning Research (Guyon and Elisseeff, 2003) to which we refer the

reader for more details. The book of Liu and Motoda (1998) also gives an overview

on feature selection.

1.2.1 Feature Selection Using Class Attributes

This subsection gives a general overview on feature selection techniques which have

been used for gene selection on microarray data, whereas the next subsection focuses

on the more recently developed kernel based methods. In both sections we consider

feature selection techniques which extract features according to their dependencies

with the sample classes, hence we assume that the class labels are available for the

training set. Methods which exploit the additional information given by the class

labels are in general superior to methods not using this information: features which

can be removed without changing the conditional probability of class labels with

respect to all features are irrelevant for classification. Without explicit class labels

feature selection must be based on the distribution of feature values, for example

on entropy or saliency measures. Those methods are not considered here.

Feature selection methods perform either feature ranking or subset selection.

In feature ranking an importance value is assigned to every feature while subsetFeature Ranking

and Subset

Selection

selection attempts at constructing an optimal subset of features. While some feature

ranking methods do not consider dependencies between features, subset selection

methods usually do and may even include features which have low correlations with

the class label if justified by a good classification performance. The latter usually

happens if dependencies between features (and not between class label and a certain

feature) are important for prediction. In those cases the selection of interacting

features is important, but it is also difficult to achieve (see Turney (1993a,b)).

Feature selection methods fall into one of two categories (Langley (1994); Kohavi

and John (1997); John et al. (1994); Das (2001); Liu and Motoda (1998); ?)):

(a) filter methods orFilter vs.

Wrapper

Methods
(b) wrapper methods.

Ad. (a) Filter methods: filter methods extract features whose values show

dependencies with class labels without explicitly relying on a predictor (classifier).Filter Methods

One example are statistical methods which compute the statistical dependencies

between class labels and features and select features where the dependencies are

2. Note that item (b) may not be fully addressed by feature selection approaches because
redundant features are avoided and not all indicator genes are extracted. However, the
missing genes can be extracted by correlation analysis in a subsequent step.
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strong. The calculation of dependencies is based on Pearson’s correlation coefficient,

Wilcoxon statistics, t-statistics, Fisher’s criterion or signal-to-noise ratios (see

Hastie et al. (2001); ?); Furey et al. (2000); Tusher et al. (2001)). StatisticalRanking

Methods,

Statistics and

Information

Theory

methods are fast and robust, but assume certain data or class distributions and

cannot recognize dependencies between features. In principle, statistical methods

can serve as subset selection methods if the dependency between a whole feature

subset and the class label is computed. For example, the mutual information

between feature sets and class labels has been considered in (Koller and Sahami,

1996). However the number of possible subsets increases exponentially with the

number of features which makes these approaches unattractive. Therefore, the

method in (Koller and Sahami, 1996) is only tractable if approximations are made.

The “relief” methods (Kira and Rendell (1992); Rendell and Kira (1992);

Kononenko (1994); Robnik-Sikonja and Kononenko (1997)) are another approach

which assign relevance values to features. Values are assigned according to the

average separation of data vectors belonging to different classes minus the average

separation of data points belonging to the same class. The averages are computed

by randomly selecting a data point and determining its nearest data points from

the same class and the opposite class. The “relief” methods are fast, can detect

feature dependencies but — again — do not remove redundant features.

Combinatorial search procedures are able to remove redundant features from the

selected set. These methods exhaustively test all feature subsets for their ability toSubset Selection

Methods separate the classes, that is whether two training vectors have the same values on the

selected feature subset but different class labels. After testing, the minimal subset

necessary to predict the class label is chosen (for example FOCUS (Almuallim

and Dietterich, 1991) or the probabilistic approach in (?)). Combinatorial search

methods, however, suffer from high computational costs and can only be applied to

a small number of features. They are prone to overfitting through noise but on the

other hand they will find the best solution in the noiseless case. Another feature

subset selection which — like FOCUS — searches for a minimal necessary feature

subset to separate the classes is based on decision trees (Cardie, 1993). The decision

tree is used for separating the classes but not as a classifier. This method, however,

is not applicable for small training sets because only log2 m features are selected

if m training examples are available. Since the sample size for microarray data is

usually below 100, only log2 100 ≈ 7 genes are typically selected. These are too

few genes.

Ad. (b) Wrapper methods: wrapper methods (see Kohavi and John (1997);

John et al. (1994)) use a classifier as the objective function for the evaluation of a

subset of features. The classifier is obtained through a model selection (training)

method which minimizes the classification error on the training data. The classifier

is then used to compute the prediction error on a validation set. Typical classifiersWrapper

Methods are decision trees, for example ID3 (Quinlan, 1986), CART (Breiman et al., 1984),

and C4.5 (Quinlan, 1993), or instance-based classifiers like K-nearest neighbor.

Well known wrapper methods are the nested subset methods which are based on



2003/08/28 16:17

12 Gene Selection for Microarray Data

greedy strategies like hill-climbing (for example SLASH Caruana and Freitag (1994)

and the random mutation hillclimbing — random mutation of feature presence map

— described in Skalak (1994)). Nested subset methods perform either “forward

selection” (Cover and Campenhout (1977)) or “backward elimination” (Marill and

Green (1963)). Forward selection works in the underfitting regime. It starts fromForward vs.

Backward

Selection

an empty set of features and adds features step by step which lead to the largest

reduction of the generalization error. Backward elimination, on the other hand,

works in the overfitting regime. It starts with the set of all features and removes

unimportant features step by step in order to maximally reduce the generalization

error. The major shortcoming of these methods is that they do not consider all

possible combinations of features (Cover and Campenhout (1977)). If, for example,Hill-Climbing and

Search Methods only the XOR of two features is important, these features would not be recognized

by a forward selection procedure which adds only a single feature at a time.

The backward selection procedure suffers from a similar problem. Assume that

one feature conveys the information of two other features and vice versa. The

best strategy would be to remove these two features to obtain a minimal set but

backward selection may keep these two features and remove the single one. Another

problem of backward selection is to determine good candidate features for deletion

because overfitting makes it hard to distinguish between label noise fitting and true

dependencies with class labels.

Other search strategies are computationally more expensive but explore more

possible feature sets. Such search methods include beam and bidirectional search

(Siedlecki and Sklansky, 1988), best-first search (Xu et al., 1989), and genetic

algorithms (Vafaie and Jong, 1993, 1992; Bala et al., 1995).

1.2.2 Kernel Based Methods

Recently kernel based feature selection methods which use the support vector

machine (SVM) approach have shown good performance for feature selection tasks

(see for example the review in Guyon and Elisseeff (2003)). Kernel based feature

selection methods are emphasized through this subsection since they are especially

suited for microarray data due to the fact that they have shown good results in high

dimensional data spaces and have been successfully applied to noisy data. These

methods use either one of two feature selection technique, which were already known

in the field of neural networks:Feature Selection

During or After

Learning
(a) feature selection by pruning irrelevant features after a classifier has been

learned or

(b) adding a regularization term to the training error which penalizes the use of

uninformative features during learning a classification task.

Ad. (a) Feature selection after learning.

?) proposed a feature selection method for support vector learning of linear

classifiers where the features with the smallest squared weight values are pruned
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after learning is complete. This method is a special case of the “Optimal Brain

Surgeon” (OBS, Hassibi and Stork (1993)) or “Optimal Brain Damage” (LeCun

et al., 1990) techniques for dependent (in case of OBS) or independent (in case

of OBD) feature values under the assumption that feature values have variance

one. OBS is based on a Taylor expansion of the mean squared error around its

minimum, and the increase in training for a pruned feature is estimated by the

Hessian3. Intuitively, the support vector method corresponds to projecting the

normal vector of the separating hyperplane into the subspace perpendicular to the

less important directions. The features for which these values are lowest are then

deleted. ?) also describe an iterative version of this feature selection procedure

where the feature with the smallest absolute weight is removed after each SVM

optimization step. This method is then called “Recursive Feature Elimination”Recursive Feature

Elimination

(RFE)

(RFE) and is an example of backward elimination of features. It has recently been

extended by Rakotomamonjy (2003) for nonlinear kernels. Note, however, that these

methods which prune features after learning cannot detect redundant features and

that they are sensitive to outliers.

Ad. (b) Feature selection during learning.

Regularization techniques have been proposed for support vector machines in

order to improve prediction performance by selecting relevant features. The first

set of techniques directly favors SVMs with sparse weight vectors. This can be

done by using the 1-norm in the SVM objective function, a technique, which1-Norm SVMs

is known as the linear programming (LP) machine (Schölkopf and Smola, 2002;

Smola et al., 1999; Frieß and Harrison, 1998). This approach leads to many zero

components of the weight vector and to the removal of the corresponding features. In

(Bradley and Mangasarian, 1998; Bi et al., 2003) these methods are utilized together

with backward elimination. In (Bradley and Mangasarian, 1998) the 0-norm of the

weight vector is considered as an objective to select a classifier. The 0-norm counts

the non-zero components of the weight vector which leads to a discrete and NP-

hard optimization problem. Approximations can be made but they are sensitive

to the choice of parameters (see Weston et al. (2003)) and the optimization is

still computationally complex in high dimensions. Weston et al. (2003) propose an0-Norm SVMs

improved approximation of the 0-norm, which reduces to a method which iteratively

solves 1-norm SVMs and adjusts scaling factors for the different features. In (Perkins

et al., 2003) both the 0-norm and the 1- or 2-norm are used for feature selection,

where the 1- or 2-norm serves for regularization and the 0-norm selects features.

The second set of techniques is based on the proper choice of scaling factors for

the different features. Weston et al. (2000) applies scaling factors to the 2-norm

SVM approach (“R2W2”). Two phases are performed iteratively. First the SVMR2W2

is optimized and a bound for the generalization error is computed. Secondly, the

scaling factors are determined by a gradient descent method minimizing the bound.

3. For a linear classifier the Hessian of the mean squared error is equal to the estimated
covariance matrix.
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This method has the advantage, that it can be extended to nonlinear kernels, where

the scaling factors are put into the kernel function. On the other hand, this method

is computationally expensive because two optimization problems (SVM solution

and error bound) have to be solved for every iteration and the kernel matrix must

be evaluated for every step. Additionally, the gradient based optimization suffers

from convergence to local optima.

Statistical methods are so far the most common choice for selecting relevant genes

from microarray data (for example Pomeroy et al. (2002)). However, support vector

machine based methods have recently been applied with good success (Shipp et al.,

2002).

1.3 The Potential Support Vector Machine for Feature Selection

In this section we introduce a new feature selection method which is based on the

support vector machine technique (see also Hochreiter and Obermayer (2003a)).

Feature selection and classification are performed simultaneously. The main differ-

ences to previous approaches are:

Sphering. In order to judge the relevance of feature components, the variance

should be normalized, that is the data should be sphered (whitened). Therefore, an

objective is formulated according to which the classifier is selected by maximizing

the margin after sphering. It turns out that sphering has two additional advantages

for the SVM technique. Firstly, the derived new support vector machine approach is

invariant to linear transformation of the data — as are the margin bounds. Secondly,

tighter margin bounds can be obtained.

New constraints. The constraints of the optimization problem are modified in

order to ensure that the classifier is optimal with respect to the mean squared

error between the classification function and the labels. In contrast to previous

approaches where one constraint is associated with each of the m training exam-

ples, each constraint is now associated with one feature and the number of new

constraints is equal to the number N of features.

Support features. The combination of the new objective with the new constraints

allows to assign support vector weights to features, and the normal vector of the

classification boundary is expanded in terms of these weights rather than in terms

of support vector data points. This allows feature selection according to whether a

feature is a support vector or not. As a side effect the dual optimization problem can

be efficiently solved using a technique similar to sequential minimal optimization

Platt (1999).

In summary, a classifier is selected from the set of all classifiers with minimal mean

squared error which yields the largest margin after sphering the data. The new

support vector machine removes irrelevant features, that are features which lead

to a minimal increase of the mean squared error when removed. More formally,
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feature selection is done by assigning support vector weights to features — the

features which are support vectors are selected.

In the following subsections, we first briefly review the classical support vector

machine (SVM). Then we introduce a new objective for achieving scale-invariant

SVMs, present new constraints for correct classification, and combine the new

objective and the new constraints into one framework. Finally, a summary of the

new technique is given.

1.3.1 The Classical Support Vector Machine

Let us consider a set of m objects, which are described by feature vectors x ∈ R
N ,

and let us represent this data set by the matrix X := (x1,x2, . . . ,xm). We

furthermore assume that every object belongs to one of two classes, and that class

membership is denoted by a binary label y ∈ {+1,−1}. The labels for the m

objects are summarized by a label vector y, where yi is the label of xi.

The goal is to construct a linear classifier based on the feature vectors x. In the

standard support vector machine approach (see Chapter ??) this classifier is defined

by taking the sign of the classification function

f(x) = (w · x) + b , (1.1)

where the weight vector w has been normalized such that the margin ρ, that is

the distance between the classification boundary and the closest data point, is

ρ = ‖w‖−1.

Classical support vector machines construct a classification function which max-

imize the margin under the constraint that the training data is classified correctly:

min
w,b

1

2
‖w‖2 (1.2)

s.t. yi ((w · xi) + b) ≥ 1 .

Here we assume that the data X with label vector y is linearly separable, otherwise

slack variables have to be used. If the number of training examples m is larger than

the Vapnik-Chervonenkis (VC) dimension h (a capacity measure for classifiers, seeVC Dimension

for example ?)), then one obtains the following bound on the generalization error

R(f) of f (also called “risk of f”) (?Schölkopf and Smola, 2002):

R(f) ≤ Remp(f) +

√

1

m

(

h

(

ln

(

2 m

h

)

+ 1

)

−
(

ln (δ)

4

))

(1.3)

Worst Case

Bounds
which holds with probability 1 − δ. δ denotes the probability, that a training set

X of size m has been randomly drawn from the underlying distribution, for which

the bound eq. (1.3) does not hold. Remp(f) denotes the training error of f (also

called the “empirical risk of f”). For the set of all linear classifiers defined on X,

for which ρ ≥ ρmin holds, one obtains

h ≤ min

{[

R2

ρ2
min

]

, N

}

+ 1 (1.4)
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(see ?Schölkopf and Smola (2002)), where [·] denotes the integer part and R is

the radius of the smallest sphere in the data space, which contains all the training

data. The fact that the bounds4 become smaller for increasing ρ and decreasing

N , motivates the maximum margin principle, eq. (1.2), as well as the concept of

feature selection (minimizing N). Bounds on the expected generalization error can

also be derived (cf. ?Schölkopf and Smola (2002)). They also become smaller for

increasing ρ and decreasing N .

1.3.2 A Scale Invariant Objective Function

Both the selection of a classifier using the maximum margin principle and the values

obtained for the bounds on the generalization error described in the last section suf-

fer from the problem that they are not invariant under linear transformations. This

problem is illustrated in Fig. 1.2. The figure shows a two dimensional classification

problem, where the data points from the two classes are indicated by triangles and

circles. In the left figure, both classes are separated by the hyperplane with the

largest margin (solid line). In the right figure, the same classification problem is

shown, but scaled along the vertical axis by a factor s. Again, the solid line denotes

the support vector solution, but when the classifier is scaled back to s = 1 (dashed

line in the left figure) it does no longer coincide with the original SVM solution.

Therefore, the optimal hyperplane is not invariant under scaling, hence predictions

of class labels may change if the data is rescaled before learning. In the legend of

Fig. 1.2 it is shown that the ratio R2

ρ2 , which bounds the VC dimension (see eq. 1.4)

and determines an upper bound on the generalization error (see eq. 1.3) has also

changed. If, however, the classifier depends on scale factors, the question arises,

which scale factors should be used for classifier selection.

Here we suggest to scale the training data such that the margin ρ remains

constant while the radius R of the sphere containing all training data becomes

as small as possible. This scaling results in a new sphere with radius R̃ which

still contains all training data and which leads to a tight margin-based bound for

the generalization error. Optimality is achieved when all directions orthogonal the

normal vector w are scaled to zero and R̃ = mint∈R maxi | (ŵ · xi) + t| ≤
maxi | (ŵ · xi) |, where ŵ := w

‖w‖ . Note that with offset b of the classification

function the sphere must not be centered at the origin (?). Unfortunately, above

formulation does not lead to a handable optimization problem. Therefore, we

suggest to minimize the upper bound:

R̃2

ρ2
= R̃2 ‖w‖2 ≤ max

i
(w · xi)

2 ≤
∑

i

(w · xi)
2

=
∥

∥X⊤ w
∥

∥

2
. (1.5)

In (Hochreiter and Obermayer, 2003b) it is shown that replacing the objective

4. Note that these bounds can be improved using the concepts of covering numbers and
the fat shattering dimension (Shawe-Taylor et al., 1996, 1998; Schölkopf and Smola, 2002).
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function in eqs. (1.2) by the upper boundNew Objective

w⊤X X⊤w =
∥

∥X⊤w
∥

∥

2
, (1.6)

of eq. (1.5) on R̃2

ρ2 corresponds to the integration of sphering (whitening) and SVM

learning into one framework. The resulting classifier is called “sphered supportImproved Error

Bound by

Sphering

vector machine” (S-SVM). Minimizing the new objective leads to normal vectors

which tend to point in directions of low variance of the data. If the data has already

been sphered, then the covariance matrix is given by X X⊤ = I and we recover

the classical SVM5. In (Hochreiter and Obermayer, 2003b) a new error bound

based on covering numbers is derived according to the considerations above, which

additionally motivates the new objective function eq. (1.6). There it is also shown,

that the new objective is well defined for cases where X X⊤ or/and X⊤ X is

singular.

The new objective leads to separating hyperplanes which are invariant to linear

transformations of the data. Consequently, the bounds and the performance of theInvariant Under

Linear

Transformations

derived classifier no longer depend on scale factors. Note, that the kernel trick

carries over to the S-SVM as shown in (Hochreiter and Obermayer, 2003b). The

S-SVM can also be applied for kernels which are not positive definite, that is which

are not Mercer kernels (Hochreiter and Obermayer, 2002).

1.3.3 New Constraints

To assign support vector weights to the feature components the m constraints

enforcing correct classification have to be transformed into N constraints associated

with the features. The idea of the transformation is to compute the correlation

between the residual error and a feature component. If these correlations are zero,

the empirical risk is minimal.

We define a residual error ri for a data point xi as the difference between its class

label yi and the value of the classification function f , f(x) = (w · x) + b:Residual Error

ri = (w · xi) + b − yi . (1.7)

For every feature component j we then compute the mixed moments σj ,

σj =
1

m

m
∑

i=1

(xi)j ri , (1.8)

between the residual error ri and the measured values (xi)j . These mixed moments

σj should be made small (or zero). The rationale behind minimal values for σj is

that — given quadratic loss functions — they lead to an optimal classifier. Consider

the quadratic loss function

c(xi, yi, f(xi)) =
1

2
r2
i (1.9)

5. In general, however, sphering is not possible as a preprocessing step if a kernel is used.
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and the empirical loss (the mean squared error)

Remp(fw) =
1

m

m
∑

i=1

c (xi, yi, f(xi)) . (1.10)

The mixed moments σj are equal to the derivative of the empirical loss with respect

to (w)j :

σj =
∂Remp(f)

∂ (w)j

. (1.11)

That is the empirical error is minimal ifConstraint

Assures Minimal

Empirical Risk σj =
1

m

∑

i

(xi)j ri = 0 . (1.12)

Note that there exists only one minimum since the squared error is a convex function

in the parameters w.

These considerations motivate a new set of constraints

X r = X
(

X⊤ w + b1 − y
)

= 0 , (1.13)

which an optimal classifier must fulfill, because

(X r)j =

m
∑

i=1

(xi)j ri = m σj = m
∂Remp(f)

∂ (w)j

. (1.14)

However, measurement noise may lead to high values of σj which — when mini-

mized — would lead to strong overfitting. Therefore, we introduce a “correlation

threshold” ǫ which separates the noise from the signal part, and we modify theCorrelation

Threshold ǫ constraints in eq. (1.13) according to

X
(

X⊤ w + b1 − y
)

− ǫ 1 ≤ 0 , (1.15)

X
(

X⊤ w + b1 − y
)

+ ǫ 1 ≥ 0 .

This formulation is analogous to the ǫ-insensitive loss (Schölkopf and Smola, 2002).

If measurements of some features have larger variance then others, a global

(independent of the feature j) correlation threshold ǫ cannot distinguish between

high σj values resulting from high correlation between the ri and (xi)j and high

σj values resulting from large variance of the values (xi)j . A global, that is feature

independent, ǫ would lead to an undesired preference of highly varying features

even if the do not convey information about the class label. Therefore, the variance

of the values (xi)j should be taken into account. For example, a more appropriate

measure would be Pearson’s correlation coefficient

σ̂j =

∑m

i=1

(

(xi)j − x̄j

)

(ri − r)
√

∑m
i=1

(

(xi)j − x̄j

)2
√

∑m
i=1 (ri − r)

2

, (1.16)

where r = 1
m

∑m

i=1 ri is the mean residual and x̄j = 1
m

∑m

i=1 (xi)j is the mean
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of the jth feature. In order to utilize the correlation coefficient σ̂j for a global ǫ,

we assume that the data vectors
(

(x1)j , (x2)j , . . . , (xm)j

)

are normalized to zero

mean and unit variance:

1

m

m
∑

i=1

(

(xi)j − x̄j

)2

= 1 and x̄j =
1

m

m
∑

i=1

(xi)j = 0 . (1.17)

This normalization assumption is sufficient for a global ǫ because σj ,

σj =
1

m

m
∑

i=1

(xi)j ri = σ̂j

1√
m

‖r − r1‖ , (1.18)

is linear in the correlation coefficient σ̂j and otherwise independent of component

j. If the noise is large, random correlations will occur more often, and the value

of ǫ must be increased. If the strength of the measurement noise were known, the

correct value of ǫ can be determined a priori. Otherwise, it takes the role of a

hyperparameter and must be adapted using model selection techniques.

Besides the important interpretation of ǫ as a noise parameter, there is a second

interpretation in terms of bounding the increase of the residual error when a featureǫ Bounds the

Error Increase is removed. If we change w in the direction ej by an amount of β, the new residual

error rnew
i is

rnew
i = ((w + β ej) · xi) + b − yi , (1.19)

where ej is the unit vector parallel to the jth feature axis. We obtain
∑

i

(rnew
i )

2
=

∑

i

(

rold
i + β (ej · xi)

)2
(1.20)

=
∑

i

(

rold
i

)2
+ 2 β

∑

i

rold
i (xi)j +

∑

i

β2 (xi)
2

j

=
∑

i

(

rold
i

)2
+ 2 β m σj + m β2 .

Because the constraints ensure that |σj | m ≤ ǫ, the increase on the residual error

after the elimination the jth feature is bounded by

2 ǫ |(w)j | + m (w)2j , (1.21)

where we set β = − (w)j .

1.3.4 The Potential Support Vector Machine

Now we combine both the new objective from equation (1.6) and the new constraints

from equation (1.15) and call the new procedure of selecting a classifier the

Potential Support Vector Machine (P-SVM). As we will see, the combination

of new objective and new constraints leads to an expansion of the normal vector

of the classification boundary into a sparse set of features, hence allows to express

the relevance of features via support vector weights. Combining eq. (1.6) and eqs.

(1.15) we obtainPotential Support

Vector Machine

(P-SVM): Primal
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min
w,b

1

2
‖X⊤ w‖2 (1.22)

s.t. X
(

X⊤ w + b1 − y
)

+ ǫ 1 ≥ 0

X
(

X⊤ w + b1 − y
)

− ǫ 1 ≤ 0 .

If the row vectors of X are normalized to mean zero, then X1 = 0 and the term

containing b vanishes. The parameter ǫ serves two important purposes:Why ǫ?

Large values of ǫ lead to a sparse expansion of the weight vector through the

support features.

If X X⊤ is singular and w is not uniquely determined, ǫ enforces a unique solution,

which is characterized by the most sparse representation through features.

The interpretation of ǫ as a sparseness property is known from support vector

regression (Schölkopf and Smola, 2002).

Optimization is usually performed using the Wolfe dual of eq. (1.22) given by

(see Appendix 1.A)Potential Support

Vector Machine

(P-SVM): Dual min
α

+,α−

1

2

(

α
+ − α

−
)⊤

X X⊤
(

α
+ − α

−
)

− (1.23)

y⊤ X⊤
(

α
+ − α

−
)

+ ǫ 1⊤
(

α
+ + α

−
)

s.t. 1⊤ X⊤
(

α
+ − α

−
)

= 0 ,

0 ≤ α
+ , 0 ≤ α

− ,

where the quantities α = (α+ − α
−) denote the Lagrange parameters.

1⊤ X⊤ (α+ − α
−) = 0 is automatically satisfied, if the row vectors of X

are normalized to zero mean. The dual problem is solved by a Sequential Minimal

Optimization (SMO) technique, see (Platt, 1999). A fast solver for the P-SVM isFast

Optimization by

SMO

described in (Hochreiter and Obermayer, 2003b), where advantage can be taken

of the fact that the equality constraint vanishes for zero mean row vectors of X.

The SMO technique is important if the number of features is large because the

optimization problem of the P-SVM is quadratic in the number of features rather

than in the number of data points. In contrast to standard SVMs with a linear

kernel it is the correlation matrix X X⊤ and not the Gram matrix X⊤ X which

enters the SVM objective.

Finally, the classification function f has to be constructed using the optimal

values of the Lagrange parameters α. In Appendix 1.A we show that

w = α . (1.24)

In contrast to the standard SVM expansion of w by its support vectors x, the

weight vector w is now expanded into a sparse set of features components which

serve as the support vectors in this case. The value for b can be computed from the

condition that the average residual error r is equal to zero:Computing b

b = − 1

m

m
∑

i=1

((w · xi) − yi) . (1.25)
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Note that b is chosen so that

∂Remp(f)

∂b
=

1

m

∑

i

ri = b +
1

m

∑

i

((w · xi) − yi) = 0 . (1.26)

That means b takes on its optimal value for minimization of the empirical risk (as

was already ensured for w through the constraints). If the row vectors of X are

normalized to zero, we obtain

b =
1

m

m
∑

i=1

yi . (1.27)

The classification function is then given by

f(u) = (w · u) + b =
n

∑

j=1

αj (u · ej) + b =
n

∑

j=1

αj (u)j + b . (1.28)

The classifier based on eq. (1.28) depends on the weighting coefficients αj and

b, which were determined during optimization, and it depends on the measured

values (u)j of the selected features for the object to be classified. The weighting

coefficients αj can be interpreted as class indicators, because they separate theClass Indicators

features into features which are relevant for class 1 and class -1, according to the sign

of αj = α+
j − α−

j . If the value of ǫ is large enough during learning, the expansion

eq. (1.24) of the weight vector contains only a few “most informative” features,

hence most of the components of w are zero. The other features are discarded

because of being too noisy or not conveying information about the class labels.

Sparseness can be attributed to the term ǫ 1⊤ (α+ + α
−) (or ǫ ‖α‖1) in the dualSparseness

objective function eq. (1.23). For large enough values of ǫ, this term pushes all αj

towards zero except for the features most relevant for classification.Feature Selection

One may wonder, whether the P-SVM is similar to the 1-norm SVM because

sparseness of w is enforced through ǫ ‖α‖1. However in contrast to the 1-norm

SVM, the P-SVM still contains a quadratic part which enforces a large Euclidean

margin on the training data. The 1-norm term originates from the ǫ insensitive loss

in the primal optimization problem. The P-SVM is in this sense similar to support

vector regression (SVR) (Schölkopf and Smola, 2002), where the vector α is also

regularized by a quadratic and an 1-norm part. However, all terms of the P-SVM

are different from the corresponding terms in SVR: the quadratic matrix, the linear

term, and the constraints. In contrast to both the 1-norm SVM and the SVR the

value ǫ which weights the sparseness has a noise interpretation (measurement noise)

and ǫ can be used to bound the residual error if a feature component is deleted.

1.3.5 Summary of the P-SVM and Application to Microarray Data

The Potential Support Vector Machine is a method for selecting a classification

function, where the classification boundary depends on a small number of “relevant”

features. The method can be used for feature selection, and it can also be used for

the subsequent prediction of class labels in a classification task. The optimal P-SVM
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classifier is a classifier with minimal empirical risk but with the largest margin after

sphering the data. Feature selection can be interpreted as removing features from

the optimal classifier but bounding the increase in mean squared error through the

value ǫ.

The first observation is that optimization (that is the selection of the proper

values for α and b) only involves the measurement matrix X and the label vector

y. In order to apply the P-SVM method to the analysis of microarray data, weNo Kernel Only

Measurements

and Labels

identify the objects with samples, the features with genes, and the matrix X with

the matrix of expression values. Due to the term X X⊤ in the dual objective, the

optimization problem is well defined for measurement matrices X of expression

values. From a conceptual point of view, however, it is advantageous to interpret

the matrix X of observations (here: expression values) itself as a dot product matrix

whose values emerge as a result of the application of a measurement kernel. This

view is taken in (Hochreiter and Obermayer, 2003a,b) and briefly summarized in

Appendix 1.B.

The second observation is that an evaluation of the classifier for new samples

i only involves the measurement of its expression values (xi)j for the selected

“support” genes j. The number of “support genes” depends on the value of a noiseClassification

with Few

“Support Genes”

parameter, the correlation threshold ǫ. If the value of ǫ is large during learning, only

a few “most informative” genes are kept. The other genes are discarded because of

being too noisy or not conveying information about the class labels.

The set of all genes for which the weighting coefficients αj are non-zero (the setP-SVM Gene

Selection of support genes) is the selected feature set. The size of this set is controlled by the

value of ǫ, and if the P-SVM is applied for feature selection, the value of ǫ should

be large.

1.4 The Gene Selection Protocol

In this section we describe the protocol for extracting meaningful genes from a

given set of expression values for the purpose of predicting labels of the sample

classes. The protocol includes data preprocessing, the proper normalization of the

expression values, the feature selection and ranking steps, and the final construction

of the predictor. We use the protocol together with our feature selection procedure

which was described in Section 1.3. The protocol, however, can also be applied for

other feature selection or ranking methods.

Note that our feature selection method requires class labels which must beAdditional

Information by

Labels

supplied together with the expression values of the microarray experiment. When

this technique is applied to the classification of tumor samples in Subsection 1.5.2

we are provided with binary class labels, but real values which are associated with

the different samples may also be used. For the following, however, we assume that

the task is to select features for classification and that m labeled samples are given

for training the classifier.
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1.4.1 Description of the Protocol

1. Expression values vs. ratios. Before data analysis starts it is necessaryGene Selection

Protocol to choose an appropriate representation of the data. Common representations are

based on the ratio Tj =
Rj

Gj
of expression values between the value Rj (red) of a

gene j in the sample to analyze and the value Gj (green) in the control sample, and

the log ratio Lj = log2(Tj). We, however, suggest to use the original expression

values Rj because our experimental findings on different datasets (for example the

GIST data from Allander et al. (2001)) showed increased classification performance

when the original values were used.

2. Present call. The present call is usually the first step in the analysis of

microarray data. During this step genes are identified for which the confidence

is high, that they are actually expressed in at least one of the samples. GenesPresent Call

for which this confidence is low are excluded from further processing in order to

suppress noise.

For this purpose an error model has to be constructed for the expression values or

their ratios (sometimes before, sometimes after averaging across multiple measure-

ments of the same sample — see Tseng et al. (2001); Schuchhardt et al. (2000);

Kerr et al. (2000); Hartemink et al. (2001)). This error model accounts for both

measurement specific noise (for example background fluctuations), which affects all

expression values in a similar way, and gene specific noise (for example the binding

efficiency of the dye), which affects expression values for different genes in a differ-

ent way. Using this error model one assigns a P -value, which gives the probability

that the observed measurement is produced by noise, to every measurement of an

expression level. If the P -value is smaller than a threshold q1 (typical values are 5%,

2%, or 1%), the expression level is marked “reliable”. If this happens for a minimum

number q2 (typical values range from 3 to 20) of samples, the corresponding gene

is selected and a so-called present call has been made.

3. Normalization. Before further processing, the expression values are normalized

to mean zero and unit variance across all training samples and separately for every

gene. Normalization accounts for the fact that expression values may differ by ordersNormalization

of magnitudes between genes and allows to assess the importance of genes also

for genes with small expression values. Sometimes more advanced normalization

techniques are used (Schuchhardt et al., 2000; Hill et al., 2001; Durbin et al., 2002;

Yang et al., 2002; Huber et al., 2002).

4. Gene ranking and gene selection. Here we assume that a feature selection

method has been chosen where the size of the set of selected genes is controlledGene Ranking,

Determining

Hyperparameters

and Number of

Genes

by a hyperparameter which we call ǫ in the following. Although we propose to use

the P-SVM method any other features selection method can be used with this gene

selection protocol.

In this step we perform two loops: An “inner loop” and an “outer loop” (the leave-

one-out loop). The inner loop serves two purposes. It ranks features if only a subset

method like the P-SVM is available and it makes feature selection more robust
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against variations due to initial conditions of the selection method. The outer loop

also serves also two purposes. It makes the selection robust against outlier samples

and allows to determine the optimal number of selected genes together with the

optimal values of hyperparameters for the later prediction of class labels. In order

to do this, a predictor must be constructed. Here we suggest to use a ν-SVM where

the value of ν is optimized by the outer loop. In order to implement the outer

(leave-one-out) loop, m different sets of samples of size m − 1 are constructed by

leaving out one sample for validation. For each of the m sets of reduced size, we

perform gene selection and ranking using the following “inner loop”.

Inner loop. The subset selection method is applied multiple times to every reduced

set of samples for different values of ǫ. For every set of samples multiple sets ofInner Loop

genes of different size are obtained, one for every value of ǫ. If the value of ǫ is

large, the number of selected genes is small and vice versa. The inner loop starts

with values of ǫ which are fairly large in order to obtain few genes only. Gradually

the value is reduced to obtain more genes per run. Genes obtained for the largest

value of ǫ obtain the highest rank, the second highest rank is given to genes which

additionally appear for the second largest value of ǫ, etc. The values of ǫ are constant

across sample sets. The minimal value should be chosen, such that the number of

extracted genes is approximately the total number m of samples. The maximal value

should be chosen such that approximately five to ten genes are selected. The other

values are distributed uniformly between these extreme values. In the numerical

experiments in Section 1.5 a total of three to five different values were used.

Outer loop. The results of the inner loops are then combined across the m different

sets of samples. A final ranking of genes is obtained according to how often genesOuter Loop

are selected in the m leave-one-out runs of the inner loop. If a gene is selected in

many leave-one-out runs, it is ranked high, else it is ranked low. Genes which are

selected equally often are ranked according to the average of their rank determined

by the inner loops. The advantage of the leave-one-out procedure is that a high

correlation between expression values and class labels induced by a single sample

is scaled down if the according sample is removed. This makes the procedure more

robust against outliers.

The outer loop is also used for selecting an optimal number of genes and other

hyperparameters. For this purpose, ν-SVMs are trained on each of the m sets of

samples for different values of the hyperparameter ν and the number F of high

ranking genes (ranking is obtained by the inner loop). Then the average error is

calculated on the left out samples. Since the leave-one-out error as a function of

the number F of selected genes is noisy, the leave-one-out error for F is replaced

by the average of the leave-one-out errors for F , F + a, and F − a. Then the values

of the hyperparameter ν and the number of genes F which give rise to the lowest

error are selected. This completes the feature selection procedure.

1.4.2 Comments on the Protocol and on Gene Selection

Corrections to the outer, leave-one-out loop. The samples which were removed from
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the data in the outer loop when constructing the m reduced subsets for the gene

ranking should not be considered for the present call and for determining the

normalization parameters. Both steps should be done individually for each of the m

sets of sample, otherwise feature or hyperparameter selection may not be optimal.

Computational Costs. The feature selection protocol requires m × nǫ feature se-

lection runs, where nǫ is the number of different values of the ǫ parameter. However

the computational effort is justified by the increased robustness against correlation

by chance (see next item) and the elimination of single sample correlations.

Correlations by chance. “Correlations by chance” refers to the fact, that noise

induced spurious correlations between genes and class labels may appear for a

small sample size if the level of noise is high. If the number of selected genes

is small compared to the total number of probes (genes) on the chip, spurious

correlations may become a serious problem. Monte-Carlo simulations of ?) onCorrelation by

Chance randomly chosen expression values for a data set of 78 samples and 5000 genes

resulted in 36 “genes” which had noise induced correlation coefficients larger than

0.3. In order to avoid large negative effects of abovementioned spurious correlations

the number of selected genes should not be too small, and one should extract a

few tens of genes rather than a few genes only to decrease the influence of singleMany Genes are

Better than Few

Genes

spurious correlated genes. The random correlation effect can also be reduced, by

increasing q2, the minimum number of “reliable” expression values for making a

present call. This avoids the selection of genes for which too few samples contribute

to the correlation measure. However as explained in the next paragraph too many

genes should be avoided as well.

Redundancy. Redundant sets of genes, that is sets of genes with correlated expres-

sion patterns should be avoided in order to obtain good machine learning results

(Jäger et al., 2003). Selection of too many genes with redundant information mayRedundancy

lead to low generalization performance (cf. Section 1.1). The P-SVM described in

Section 1.3 extracts a sparse set of genes hence reduces redundancy. Another reason

for avoiding redundancy is that not all causes which imply the conditions may be

recognized. This may happen if the set has to be kept small while redundant genes

are included (redundant genes indicate the same cause, see experiments in Section

1.5.1). Reducing redundancy does not preclude the extraction of coexpressed clus-

ters of genes: corregulated genes can be extracted in a subsequent processing step,

for example based on classical statistical analysis.

Finally, one may wonder why redundant information does not help to decrease the

noise level of otherwise informative genes. Empirically one finds that nonredundant

feature selection methods (P-SVM and R2W2) outperform feature selection meth-

ods which include redundant genes (Fisher correlation and RFE), see Section 1.5.1.

It seems as if the detrimental effects of a larger number of features are stronger.

1.4.3 Classification of Samples

In order to construct a predictor for the class labels of new samples a classifier

is trained on all the m samples using the optimal set of genes and the optimal
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value of the hyperparameter (here: ν, cf. Step 4). The generalization performance

of the classifier can again be estimated using a cross-validation procedure. This

procedure must involve performing the full gene selection procedure including all

preprocessing steps (for example normalization and feature selection) separately

on all m cross-validation subsets. Otherwise a bias is introduced in the estimate.

Note that this also requires to perform the “inner loop” of Step 4 on sets of m − 2

samples.

Before the classifier is applied to new data, the expression values for the new

sample must be scaled according to the parameters derived from the training set.

As a consequence we may observe expression values which are larger than the

ones which occur in the training data. We set the expression values exceeding the

maximal value in the training set to this maximal value. With this procedure we

may underestimate certain expression levels but the robustness against unexpected

deviations from the training data is increased.

1.5 Experiments

1.5.1 Toy Data

We compare different methods on data analogous to, but more difficult than the

ones used in (Weston et al., 2000). Compared to the data in (Weston et al., 2000),

the number of features is 10 times larger, the ratio of the number of relevant

features to the number of all features is smaller, and the noise in the data (measured

through misclassification rate on data vectors where all irrelevant features are set

to zero) is larger, too. The methods which are chosen for comparison are Fisher

score, Recursive Feature Elimination (RFE) (?), R2W2 according to (Weston et al.,

2000), and the P-SVM. The benchmark methods have all been successfully applied

to microarray data: Fisher score in (Pomeroy et al., 2002; ?), RFE in (?), and

R2W2 in (Shipp et al., 2002).

For the toy experiments we simulate microarray data by assuming two or more

causes (“modes”) for the class labels. Each mode is characterized by a few indicators

which means that a cause is reflected by an expression pattern across a few genes, for

example, genes belonging to the same pathway. Most features have no dependencies

with the label. All features are very noisy, and only a few samples are given, because

microarray data typically suffer from small sample sizes.

1.5.1.1 Weston Data 1

We randomly chose 600 data points (samples) with probabilities 0.5 from class 1

(yi = 1) and 0.5 from class 2 (yi = −1). 100 data points are available for feature

selection and training and the remaining 500 data points are used for testing the

classifier. Next, we generated the 2000 attributes which simulate expression values

of 2000 genes. Each data point was generated according to one of two modes to
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simulate two class determining causes for every sample.

Mode 1 was chosen with probability 0.7 and mode 2 with probability 0.3.

In mode 1 the first 10 features indicate mode 1 and are generated according

(xi)l ∼ yi·N(l, 10) , 1 ≤ l ≤ 10, where N (µ, σ) denotes a normal distribution with

mean µ and standard deviation σ. The features from 11 to 20 are chosen according

to (xi)l ∼ N(0, 10) , 11 ≤ l ≤ 20. In mode 2 the features from 11 to 20 indicate

mode 2 and are generated according to (xi)l ∼ yi · N(l − 10, 10) , 11 ≤ l ≤ 20.

The first 10 features are drawn from (xi)l ∼ N(0, 10) , 1 ≤ l ≤ 10. The remaining

1980 features are chosen according to (xi)l ∼ N(0, 20) , 21 ≤ l ≤ 2000, for both

modes.

Table 1.1 Classification performance for the Weston Data 1 data set. The values

are the fractions of misclassification averaged over 10 runs on different test set for

classifiers trained on the selected features. The original data has 2000 features of

which only 20 are relevant. Features 1 to 10 were class indicators in 70 % and

features 11 to 20 in 30 % of the data points. The table shows the results using the

top ranked 5, 10, 15, 20, and 30 features. The methods are Fisher score, Recursive

Feature Elimination (RFE) according to (?), R2W2 according to (Weston et al.,

2000), and the P-SVM. The new P-SVM, performed best in all cases.

features 5 10 15 20 30

Fisher 0.21 0.23 0.26 0.26 0.28

RFE 0.26 0.28 0.28 0.28 0.27

R2W2 0.23 0.24 0.24 0.23 0.24

P-SVM 0.21 0.20 0.22 0.22 0.23

Table 1.1 shows the fraction of misclassification on the test set which is averaged

over 10 different runs with different training and test sets. Features were selected

using the Fisher score, Recursive Feature Elimination (RFE) (?), R2W2 (Weston

et al., 2000), and the P-SVM method. Numbers are reported for classifiers using the

5, 10, 15, 20, and 30 top–ranked features. With these features we trained a classical

C-SVM on the training set and validated the performance on a test set with 500

data points. The hyperparameter C was selected through 5-fold cross-validation on

the training set from the set {0.01, 0.1, 1, 10, 100} (0.1 was chosen in most cases)

for all methods. To ensure a fair comparison of the methods the hyperparameter C

was not determined in the outer loop of our protocol for the P-SVM. Because we

neither imposed label noise nor generated extreme outliers in our data, the SVM

was not sensitive to the hyperparameter choice and the C-SVM performed as well

as the ν-SVM which we proposed in the protocol.

The success of feature selection depends on how many noisy, irrelevant features

are wrongly selected and whether all modes which influence classification perfor-



2003/08/28 16:17

28 Gene Selection for Microarray Data

mance are represented sufficiently well. The result of a C-SVM for using all features

is 0.37 (no feature selection) and for using the relevant 20 features (the perfect se-

lection) is 0.11. The P-SVM shows the best results in all cases (see Table 1.1).

1.5.1.2 Weston Data 2

Here we extend the number of modes to five to make the task more difficult. Each

mode was chosen with equal probability 0.2. For every mode r, 1 ≤ r ≤ 5, we draw

the values for the 4 associated features. We first choose a mode r then we draw

the feature values for the 4 associated features according to (xi)l ∼ yi ·N(2, 0.5 τ),

where 1 ≤ τ ≤ 4 and l = (r − 1) · 5 + τ . The remaining features from 1

to 20 (that is excluding the features associated with r) are chosen according to

(xi)l ∼ N(0, 1). The remaining 1980 features are for all modes always chosen

according to (xi)l ∼ N(0, 20) , 21 ≤ l ≤ 2000. All other parameters and the

hyperparameter selection scheme were similar to the previous experiments (Weston

Data 1). This data set is more challenging because there is a high chance to miss

indicators for one mode, especially if the set of selected features is small. Missing a

mode leads to differences in performance.

Table 1.2 Classification performance for the Weston Data 2 data set. Parameters

and procedures are described in the legend of Table 1.1.

features 5 10 15 20 30

Fisher 0.31 0.28 0.26 0.25 0.26

RFE 0.33 0.32 0.32 0.31 0.32

R2W2 0.29 0.28 0.28 0.27 0.27

P-SVM 0.28 0.23 0.24 0.24 0.26

Table 1.2 shows the fractions of misclassification on the test set averaged over

10 different combinations of training and test set. It is instructive to compare

the results of Table 1.2 with values obtained for the 20 relevant features (perfect

selection), which leads to a fractional error of 0.10, and for all 2000 features (no

selection), which leads to a fractional error of 0.38. Feature selection improves

the classification result but does not quite reach the performance of “perfect

selection” case because not all relevant genes were selected. R2W2 with the weighing

coefficients instead of selecting features has an error of 0.26, that means R2W2 in

the non-selection mode is better than in the selection mode. P-SVM shows the best

results in all cases.

In Table 1.3 we printed the numbers of the top 30 selected features for a typical

single trial, listed according to their rank. P-SVM found 11, R2W2 9, Fisher statistic

10, and RFE 7 relevant features (numbers printed in boldface). All other features
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are spurious. All five modes were detected by P-SVM, R2W2, Fisher statistics, and

RFE using the 10, 18, 15, and 23 most highly ranked features. P-SVM detected

indicator genes corresponding to all five modes using the smallest features set from

all the methods tested, which explains in part the better performance of classifiers

based on the P-SVM feature set.

Table 1.3 Numbers of the top 30 selected features for a typical single trial, listed

according to their rank. Relevant features are printed in boldface.

P-SVM: 7 837 2 18 1248 5 6 12 20 14

1562 980 664 1110 11 1404 1822 668 525 9

80 1205 997 1228 1331 289 1605 621 1277 1987

R2W2: 837 2 980 7 20 11 1277 6 45 5

18 1822 12 621 398 664 289 14 1110 587

1605 1833 1331 1248 1752 525 1060 1443 820 997

Fisher: 980 7 5 837 6 18 1562 12 2 837

20 1248 8 1404 14 1110 11 1228 80 664

1987 1275 1331 668 263 640 621 1954 1774 1605

RFE: 837 7 1987 1277 2 753 20 1110 1774 997

219 1636 12 398 6 1472 536 820 18 314

974 525 14 877 621 1516 540 654 1331 664

1.5.2 Microarray Data

1.5.2.1 Data Sets

In this subsection we apply the P-SVM to the DNA microarray data published in

(Pomeroy et al., 2002),(Shipp et al., 2002), and (?).

1. Brain tumor data set (Pomeroy et al., 2002). In our first dataset embryonal

tumors in the central nervous system are investigated. The response to a therapy

for the malignant brain tumor medulloblastoma should be predicted. Patients have

a highly variable response to therapy, which made it difficult for classical methods

to predict the therapy outcome. A good machine based prognosis, however, is highly

desirable. Negative prognoses may indicate the necessity of an alternative therapy

while positive prognoses may lead to a therapy with reduced toxicity.

Data is provided (supplementary information to (Pomeroy et al., 2002)) for 60

samples of human tissue taken from patients with different brain tumors of the

medulloblastoma kind before treatment. The patients were treated in a similar

way by chemotherapy and radiation. The clinical follow-up was monitored and the

samples were labeled according to treatment outcome. From the snap frozen tumor
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samples RNA was isolated and hybridized to an array contained 7129 probes.

The data was generated by the Affimetrix software and numbers denote “perfect

match minus mismatch”. “Perfect match” probes are oligonucleotides which are

the probes with highest hybridization efficiency (the identifying base sequence) for

a cDNA and “mismatch” probes are oligonucleotides with a small difference to

the perfect match probe (one base in the middle of the identifying base sequence

changed). Therefore, the specialization and the efficiency of the probe can be

normalized by subtracting the expression value of mismatch probe from the probe’s

expression value. For more details see (Pomeroy et al., 2002).

2. Lymphoma data set (Shipp et al., 2002). Lymphoma tumors (diffuse large B-cell

lymphoma DLBCL) show a positive response to therapy in less than 50 % of the

cases. Previous methods were not sufficient to reliably predict treatment outcome,

hence new approaches are necessary. Good predictions would allow to identify high

risk patients in order to observe them closer and to control them more intensively

and would certainly improve existing treatments.

Samples and clinical follow-ups for 58 DLBCL patients are available. For all patients

the chemotherapy is equal and the labels denote the treatment outcome: positive or

negative. From the snap frozen tumor samples RNA was isolated and hybridized to

an array containing 7129 probes resulting in an 58× 7129 matrix of “perfect match

minus mismatch”. For more details see (Shipp et al., 2002).

3. Breast cancer data set (?). 70 – 80 % of breast cancer patients receiving

chemotherapy or hormonal therapy would have survived without treatment (?),

because metastasis appears only in 20 – 30 % of the cases. Because therapy has

strong side–effects, it would be important to predict beforehand, whether a patient

would benefit from a particular therapy or not. Therefore, tumor samples were an-

alyzed using the DNA microarray technique in order to search for gene expression

patterns indicating the development of metastasis and the need for stronger medi-

cation. Clinical indicators however fail to predict the treatment outcome. The data

set is a collection of 78 patients and expression values of 24481 genes. All patients

were treated with modified radical mastectomy or breast-conserving treatment. The

treatment outcome was monitored and the tumor samples were labeled according to

whether the outcome was positive or negative. The data was given as log expression

ratios — for more details see (?).

1.5.2.2 Common Setting in All Following Experiments

We normalized the rows of the data matrix X to mean zero and variance one. In

Step 4 of our protocol we used a = 5 for the first and third, and a = 3 for the second

experiment for estimating the optimal number of features because the number of

features was smaller in the second experiment.

To classify the tissue samples after selecting the relevant genes, we applied a linear

ν-SVM (Schölkopf and Smola, 2002). We found that the choice of the classifier does

not matter much (also C-SVM and K-nearest neighbor worked) but the ν-SVM was
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the most robust against variations in the hyperparameter ν which allowed a simpler

optimization scheme in the outer loop of the protocol: ν was chosen from the set

{0.2, 0.3, 0.4, 0.5}. For all ν-SVM classifiers we fixed the threshold value b to zero,

because initial experiments showed that these reduced sets of classifiers led to better

generalization performance compared to the full set (b 6= 0). Table 1.4 summarizes

the parameters used in the experiments.

Table 1.4 Summary of parameter values used in the numerical experiments. TOP

TABLE: the first column (“data set”) gives the number of the data set (1. brain

tumor, 2. lymphoma, and 3. breast cancer). The second column (“samples”) reports

the number of tumor samples (patients). The third column (“genes”) gives the

number of probes (genes) in the original data. The fourth column (“nǫ”) shows the

number nǫ of ǫ runs in our protocol. The fifth column (“ǫ”) lists the ǫ values for the

runs. BOTTOM TABLE: the second column (“step 2”) tells whether step 2 of our

protocol is performed, that is whether the P -values were available. The third column

(“q1”) shows the P -value threshold for step 1 of our protocol. The fourth column

(“q2”) gives the minimal number of samples which must possess a P -value below

the threshold in step 1 of our protocol to select the gene. The fifth column in the

second part (“N”) is the number of features after step 1 of our protocol. The sixth

column in the second part (“a”) lists the number of features which are subtracted

and added to the actual feature number to build an average. The seventh column in

the second part (“F”) shows the average number of features used for classification.

data set samples genes nǫ ǫ

1 60 7129 3 0.25, 0.15, 0.05

2 58 7129 3 0.23, 0.13, 0.03

3 78 24481 4 0.1, 0.07, 0.03, 0.01

data set step 2 q1 q2 N a F

1 no – – 7129 5 45

2 no – – 7129 3 18

3 yes 0.02 20 3623 5 30

1.5.2.3 Benchmark Methods

We compare the result of the P-SVM method in combination with the ν-SVM to

results which have already been reported in the literature for (selection method /

classification method): known important gene / one gene classification (Pomeroy

et al., 2002), SPLASH / likelihood ratio classifier (Califano et al., 1999), signal-to-

noise-statistics / K-nearest neighbor, signal-to-noise-statistics / weighted voting,
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Fisher-statistics / weighted voting, and R2W2. Except for the P-SVM results are

taken from the corresponding literature. For the ν-SVM and the C-SVM (toy data)

we used LIBSVM (?) whereas the P-SVM was implemented in C.

1.5.2.4 Results for the Brain Tumor Data Set

The data set from (Pomeroy et al., 2002) was processed according to the protocol

from Section 1.4, except for Step 2 because of the missing P -values.

Table 1.5 Brain tumor data set: comparison of different approaches to prediction

of therapy outcome based on the DNA microarray data (for explanations see

text). The table shows the leave-one-out error given by the number of wrong

classifications (“E”) for a given number of selected features (“F”). For R2W2 “*”

means that there is no “number of features” (R2W2 scales features and does not

select features). For the P-SVM / ν-SVM the protocol determined ν = 0.4. Features

were selected using signal-to-noise-statistics (“statistics”), R2W2 (Weston et al.,

2000), SPLASH (Califano et al., 1999), and P-SVM. Data with statistical feature

selection are provided for “TrkC”-Gene classification, weighted voting, K-nearest

neighbor (KNN), combined SVM/TrkC/KNN (Comb). For SPLASH the classifier

is a likelihood ratio classifier (“LRC”). The ν-SVM is used as a classifier after

feature selection with P-SVM. Except for our method (P-SVM / ν-SVM), results

were taken from (Pomeroy et al., 2002).

Feature Selection # #

/ Classification F E

TrkC (one gene) 1 20

SPLASH / LRC 15

R2W2 * 15

statistics / weighted voting 14

statistics / KNN 8 13

Comb 12

P-SVM / ν-SVM 45 4

For the P-SVM method, the optimal number of features was 45 (average over

the leave-one-out runs). Table 1.5 shows the number of misclassifications obtained

from a leave-one-out cross-validation procedure. The P-SVM is compared with

“TrkC”-Gene classification (one gene classification), R2W2, “weighted voting” clas-

sification (the sum of the features weighted by their correlation to class labels ac-

cording to the signal-to-noise-statistics), K-nearest neighbor (KNN), and combined

SVM/TrkC/KNN classifier. Feature selection was based on the correlation of fea-

tures with classes using signal-to-noise-statistics (?) for KNN and weighted voting.
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The other feature selection method is called SPLASH developed by Califano et al.

(1999). SPLASH is a greedy subset selection method (wrapper method) and the

subsequent classifier is a likelihood ratio classifier (“LRC”) based on density es-

timation for each gene. For the R2W2 SVM technique (Weston et al., 2000) see

Section 1.2.2. The results show that the P-SVM method clearly outperforms stan-

dard methods — the number of misclassifications is down by a factor of 3.

1.5.2.5 Results for the Lymphoma Data Set

The data set from (Shipp et al., 2002) was processed according to the protocol from

Section 1.4, except for Step 2 because of the missing P -values. For the P-SVM the

optimal number of features was 18.

Table 1.6 Lymphoma data set: comparison of different approaches to prediction

of therapy outcome based on the DNA microarray data (for explanations see text).

The columns are as in Table 1.5. The outer loop of the protocol yielded ν = 0.5 for

the P-SVM / ν-SVM method. Feature selection is done by signal-to-noise-statistics

(“statistic”), R2W2, and the P-SVM. The classifiers are K-nearest neighbor (KNN),

weighted voting, and R2W2. Except for P-SVM, results were taken from (Shipp

et al., 2002).

Feature Selection / # #

Classification F E

statistic / KNN 8 16

statistic / weighted voting 13 14

R2W2 * 13

P-SVM / ν-SVM 18 12

Table 1.6 summarizes the results. The P-SVM is compared with weighted voting,

K-nearest neighbor (KNN), and the R2W2 technique. The signal-to-noise-statistics

was used to select feature for weighted voting and KNN. The new P-SVM selected

more features than the selection methods taken from (Shipp et al., 2002). The

increased number of features in this experiment was not too surprising because

sometimes “many genes are better than few genes” in order to reduce the impact

of “correlations by chance” (see Subsection 1.4.2). The P-SVM method yields

comparable to slightly better results than the best methods from (Shipp et al.,

2002).
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1.5.2.6 Results for the Breast Cancer Data Set

Before further processing of the data set from (?) the log-ratios of the expression

values were transformed according to

Sj = sgn (Lj) 2|Lj | =















Rj

Gj
for Rj ≥ Gj

− Gj

Rj
otherwise .

(1.29)

This transformation was performed in order to scale up the ratios into magnitudes

of the original Rj (see Step 1 of the protocol). Because P-values were given, Step 2

of our protocol was performed and we set the parameters q1 and q2 (see Table 1.4)

to pick between 3000 and 8000 genes (however, we did not optimize these values).

3623 were selected after Step 2 for further processing. For the P-SVM the optimal

number of features was 30.

In (?) the results for different classification threshold values are published in the

supplementary information report. That allowed us to compare classifiers according

to the Receiver Operating Characteristic (ROC) curve. The ROC curve consists of

points whose x-components (distance to the left) denote the false positive rate (class

2 misclassification rate), that is wrongly positive classified negatives divided by the

overall number of negatives. The y-components denote the true positive rate, that

is correctly classified positives divided by the overall number of positives. Note that

(1 − y) (distance to the top) is the false negative rate (class 1 misclassification

rate) and that n x + p (1 − y) is the overall misclassification rate, where n is

the fraction of class 2 (negative) examples and p the fraction of class 1 (positive)

examples. For this experiment we observe n = 0.44 and p = 0.56, therefore, the

overall misclassification rate is approximately x + (1 − y). A high performance

classifier has an ROC curve which is close to the left upper corner (x = 0 and y = 1

— no misclassification). The ROC curve gives more information on the quality of

the classifier especially if it is required to work in different regimes, for example,

under the requirements that class 1 or class 2 misclassifications should be below a

given threshold. The ROC allows, for example, to optimize for

(a) the selection of patients for adjuvant therapy where negative therapy outcome

should not be misclassified, that is a small false positive rate required (small x-values

should have large y-values: curve steeply increases at the left hand side),

(b) the selection of patients for alternative treatment where positive treatment

outcome should not be misclassified, that is a small false negative rate required

(large y-values should have small x-values: curve should not decrease starting from

the right upper corner), and

(c) the selection of good indicator genes (indicated by both the minimal misclas-

sification error given by the minimal distance x + (1 − y) of the ROC curve to the

left upper corner and the area under the ROC curve).

Table 1.7 reports the results for the breast cancer data set. The ROC curves
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Table 1.7 Breast cancer data set: comparison of different approaches to predict

therapy outcome based on the DNA microarray data (for explanations see text).

Features are selected by Fisher-statistics (“statistics”) and the P-SVM. The clas-

sifiers are weighted voting and ν-SVM where weighted voting results were taken

from (?). The number F of selected features, the number E of minimal misclassi-

fications over the threshold range, and the area under the ROC curve are shown.

The protocol chose ν = 0.2 for the ν-SVM.

Feature Selection / # min. ROC

Classification F # E area

statistics / weighted voting 70 20 0.77

P-SVM / ν-SVM 30 12 0.88

are shown in Figure 1.3 where the threshold b of the ν-SVM classifier was varied

to produce the ROC curve for the P-SVM / ν-SVM method. For comparison

these figures also contain the weighted voting result from (?) (supplementary

information). Item (a) is the goal described in (?) (distance of the left part of the

ROC curve to the top), where the poor prognosis patients should be recognized.

In contrast to (a), in (b) positive prognosis patients should be recognized (distance

of the top of the ROC curve to the left). The ROC curve judges all the regimes

between (a) and (b). For (c) we suggest two indicators, the minimum leave-one-out

error (indicated by the distance x + (1 − y) of the ROC curve to the left upper

corner) and the area under the ROC curve, where both indicator must use all genes

in an optimal way. For (a) the poor prognosis indicators are more important and in

(b) the positive prognosis indicators are the most relevant. The P-SVM results are

comparable with (?) for (a) but the results are better for (b) and (c). Overall the

P-SVM method performed better than weighted voting in (?) which is expressed

though the larger values for the ROC areas. Larger values of the area under the

ROC curve (“ROC area”) mean higher performance where the minimum is 0.5 and

the maximum 1.0.

Table 1.7 shows that the P-SVM method identified a smaller number of genes.

Here a small number of genes is desirable because we already discarded genes with

present calls based on less than 20 reliable values which reduces the risk of random

correlations.

1.6 Summary

We have introduced a new feature selection method based on the support vector

machine technique and we have applied it to the analysis of DNA microarray

data. In contrast to previous approaches, features become support vectors and

determine the classification boundary. This allows to select and rank the features
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through the support vector weights. Because the set of support vectors is sparse

and avoids redundancy, the P-SVM approach is to be preferred over statistical

methods which cannot recognize redundant information. We have described a data

analysis protocol for the extraction of relevant genes from microarray data which

can be used with the P-SVM as well as with other feature selection techniques.

We have compared our feature selection approach on toy problems with state of

the art features selection techniques and showed that our method gave the best

results. Finally we have applied the P-SVM method to three data sets where the

outcome of a chemo- or radiation therapy for cancer or tumors has to be predicted

on the basis of gene expression profiles obtained from the microarray technique.

The P-SVMs outperform previously used algorithms due to an improved selection

of relevant genes.
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1.A Derivation of the Dual Optimization Problem for the P-SVM

The primal optimization problem of the P-SVM is

min
w,b

1

2
‖X⊤ w‖2 (1.30)

s.t. X
(

X⊤ w + b1 − y
)

+ ǫ 1 ≥ 0

X
(

X⊤ w + b1 − y
)

− ǫ 1 ≤ 0 .

Following standard techniques of constrained optimization, we now derive the dual

formulation of the optimization problem. The Lagrangian L is given by

L =
1

2
w⊤ X X⊤ w − (1.31)

(

α
+
)⊤ (

X
(

X⊤ w + b1 − y
)

+ ǫ 1
)

+
(

α
−

)⊤ (

X
(

X⊤ w + b1 − y
)

− ǫ 1
)

,

where the vectors α
+ ≥ 0 and α

− ≥ 0 are the Lagrange multipliers for the

constraints in eqs. (1.30). The optimality conditions (Schölkopf and Smola, 2002)

require that the following derivatives with respect to the primal variables of the

Lagrangian L are zero:

∇wL = X X⊤ w − X X⊤
α = 0 , (1.32)

∂L

∂b
= 1⊤ X⊤

α = 0 ,
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where we used the abbreviation α = α
+ − α

− (αi = α+
i − α−

i ). In order to

ensure the first condition X X⊤ w = X X⊤
α we set

w = α . (1.33)

We then obtain the dual optimization problem of the P-SVM:

min
α

+,α−

1

2

(

α
+ − α

−
)⊤

X X⊤
(

α
+ − α

−
)

− (1.34)

y⊤ X⊤
(

α
+ − α

−
)

+ ǫ 1⊤
(

α
+ + α

−
)

s.t. 1⊤ X⊤
(

α
+ − α

−
)

= 0 ,

0 ≤ α
+ , 0 ≤ α

− .

Normalization of X to zero mean during preprocessing automatically leads to the

satisfaction of 1⊤ X⊤ (α+ − α
−) = 0.

If vectors u 6= 0 exist for which X⊤u = 0 holds, then the solution of eq. (1.33)

and of the primal optimization problem eq. (1.30) is not unique (in the primal

problem w appears only in context “X⊤ w”). For positive values of ǫ, however,

this degeneracy does not matter and a vector w is chosen, which is most sparse

in its components, that is which has the largest number of zero components. The

sparseness is due to w = α and the dual problem eqs. (1.34), where α appears

only in context “X⊤
α” except for the ǫ-part which enforces sparseness.

1.B Measurements of Complex Features

Here we consider the case that objects are fully described by a feature vector x, but

that we have measurement devices at hand that do not allow us to measure all of its

individual components. Instead we assume that a measurement apparatus allows

us to determine the values of a limited set of Ñ complex features v. The complex

features v are linear combinations of the elementary features (x)l , 1 ≤ l ≤ N ,Complex

Features and the value of a complex feature j for an object i is given by the dot product

Kij = (xi · vj) . (1.35)

If we define the matrix V := (v1,v2, . . . ,vÑ ), our (incomplete) knowledge about

the set X of objects can be summarized by the measurement or data matrix K,Measurement

Matrix
K = X⊤ V . (1.36)

For an application to microarray data, for example, we would identify the measured

matrix K with the matrix of expression values obtained by a microarray experiment.

The complex features v span a subspace of the original feature space, but we

do not require them to be orthogonal, normalized, or linearly independent. Due

to the measurements, all objects are now described by an Ñ -dimensional feature

vector (Ki1,Ki2, . . . ,KiÑ ) = ((xi · v1) , (xi · v2) , . . . , (xi · vÑ )). If the number Ñ

of different measurements is large, overfitting may occur. In order to obtain good
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generalization performance, feature selection must be performed on the set V of

complex features.

Using the same line of arguments as in Section 1.3.3, the following constraints

can be derived:

K⊤
(

X⊤ w + b1 − y
)

− ǫ 1 ≤ 0 , (1.37)

K⊤
(

X⊤ w + b1 − y
)

+ ǫ 1 ≥ 0 .

Again we normalize the vectors which correspond to single genes,

m
∑

i=1

Kij = 0 and
1

m

m
∑

i=1

K2
ij = 1 , (1.38)

and — together with the P-SVM objective of Section 1.3.2 — we obtain the primal

optimization problem:

min
w,b

1

2
‖X⊤ w‖2 (1.39)

s.t. K⊤
(

X⊤ w + b1 − y
)

+ ǫ 1 ≥ 0

K⊤
(

X⊤ w + b1 − y
)

− ǫ 1 ≤ 0 .

The corresponding dual formulation is

min
α

+,α−

1

2

(

α
+ − α

−
)⊤

K⊤ K
(

α
+ − α

−
)

− (1.40)

y⊤ K
(

α
+ − α

−
)

+ ǫ 1⊤
(

α
+ + α

−
)

s.t. 1⊤ K
(

α
+ − α

−
)

= 0 ,

0 ≤ α
+ , 0 ≤ α

− ,

where the normal vector w has now been expanded with respect to the complex

features v,

w = V α . (1.41)

The offset is again obtained by

b = − 1

m

m
∑

i=1

((w · xi) − yi) , (1.42)

from which we obtain the classification function

f(u) = (w · u) + b =

Ñ
∑

j=1

αj (u · vj) + b =

Ñ
∑

j=1

αj Kiuj + b . (1.43)

Note that K is neither required to be positive semidefinite nor square, because only

the quadratic part K⊤K appears in the objective function of eqs. (1.40). Therefore,

we may consider K as the Gram matrix of a kernel which is not positive definite,

that is a kernel which is not a Mercer kernel. Indeed, it has been shown that

kernels which are not positive definite can be used for classification without any

loss of generalization performance (Hochreiter and Obermayer, 2003b).
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The new interpretation allows to treat data in matrix form, where the matrix

entries express the relationships between two sets of objects (“row objects” and

“column objects”), and also allows to apply machine learning methods like clas-

sification, regression, or clustering to this data. The matrix originates from a dot

product of representations of these objects in some feature space. An example ofMatrix Data

such matrix data is the drug-gene matrix in (Scherf et al., 2000), where a drug-cell

matrix and a gene-cell matrix (expression values from a microarray experiment) are

multiplied to obtain a drug-gene matrix. In this example the matrices X and V can

be identified; however, the proposed framework allows to relate these matrices not

only by a plain dot product but by some kernel evaluation. In this case our new

interpretation holds as long as the kernel represents a dot product in some space

(see kernel/dot product considerations below).

A special case of data in matrix form occurs if the row objects are identical to

the column objects. This case is called “pairwise data”, and the data matrix isPairwise Data

usually interpreted as a similarity matrix K. The advantage of the interpretation

put forward in this appendix is that the P-SVM framework can still be applied by

setting V = X. Pairwise data are common in bioinformatics, for example when

considering the similarity measures for protein sequences (Lipman and Pearson,

1985), functional similarities of proteins (Sigrist et al., 2002; Falquet et al., 2002),

chromosome location similarities of genes (Cremer et al., 1993; Lu et al., 1994), or

coexpression data for genes (Heyer et al., 1999).

One issue, however, still remains open. Under what conditions is it possible to

interpret a matrix of measured values as a dot product matrix K? There is no full

answer to this question from a theoretical viewpoint, practical applications have

to confirm (or disprove) the chosen ansatz and data model. However, the question

whether it is possible to describe a measurement by a dot product can be replaced

by the question whether or not the following three conditions hold (see Hochreiter

and Obermayer (2003a)):

(1) Column objects (“samples”) to classify are elements of a Hilbert space H1,

i.e. given a basis, these objects can be described by (possibly infinite dimensional)

vectors.

(2) Row objects (“complex features”) are elements of a Hilbert space H2, i.e.

given a basis, these features can be described by (possibly infinite dimensional)

vectors.

(3) The measurement process can be expressed via the evaluation of a kernel.Measurement

Device as Kernel
Condition (3) equates the evaluation of a kernel as known from standard SVMs

with physical measurements. As the kernel matrix is measured, no model selection

has to be performed w.r.t. the kernel.
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Figure 1.1 The microarray technique (see text for explanation).
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dx dx

RR
s dydy

Figure 1.2 LEFT: data points from two classes (triangles and circles) are sepa-

rated by the largest margin hyperplane (solid line) according to the support vector

approach. The two support vectors (black symbols) are separated by dx along the

horizontal and by dy along the vertical axis, from which we obtain ρ = 1
2

√

d2
x + d2

y

and R2

ρ2 = 4 R2

d2
x + d2

y
. The dashed line indicates the classification boundary of the

classifier shown on the right, scaled back by a factor of 1
s
. RIGHT: the same data

but scaled along the vertical axis by the factor s. The data points still lie within

the sphere of radius R. The solid line denotes the support vector hyperplane, whose

scaled version is shown on the left (dashed line). We obtain ρ = 1
2

√

d2
x + s2 d2

y

and R2

ρ2 = 4 R2

d2
x + s2 d2

y
. For s 6= 1 and dy 6= 0 both the margin ρ and the term R2

ρ2

change with scaling (see text for further explanation).
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Figure 1.3 Breast cancer data set: the Receiver Operating Characteristic (ROC)

curve is shown for the P-SVM feature selection followed by a ν-SVM classifier

(solid line) and for the weighted voting approach of ?) (dotted line). The number of

selected features was F=30 for the P-SVM. The P-SVM outperformed the weighted

voting approach of ?) except for small numbers of false positives (left).
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