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Abstract

We introduce a family of classifiers based on a physical analogy to
an electrostatic system of charged conductors. The family, called
Coulomb classifiers, includes the two best-known support-vector
machines (SVMs), the ν–SVM and the C–SVM. In the electrostat-
ics analogy, a training example corresponds to a charged conductor
at a given location in space, the classification function corresponds
to the electrostatic potential function, and the training objective
function corresponds to the Coulomb energy. The electrostatic
framework provides not only a novel interpretation of existing algo-
rithms and their interrelationships, but it suggests a variety of new
methods for SVMs including kernels that bridge the gap between
polynomial and radial-basis functions, objective functions that do
not require positive-definite kernels, regularization techniques that
allow for the construction of an optimal classifier in Minkowski
space. Based on the framework, we propose novel SVMs and per-
form simulation studies to show that they are comparable or su-
perior to standard SVMs. The experiments include classification
tasks on data which are represented in terms of their pairwise prox-
imities, where a Coulomb Classifier outperformed standard SVMs.

1 Introduction

Recently, Support Vector Machines (SVMs) [2, 11, 9] have attracted much interest in
the machine-learning community and are considered state of the art for classification
and regression problems. One appealing property of SVMs is that they are based
on a convex optimization problem, which means that a single minimum exists and
can be computed efficiently. In this paper, we present a new derivation of SVMs
by analogy to an electrostatic system of charged conductors. The electrostatic
framework not only provides a physical interpretation of SVMs, but it also gives
insight into some of the seemingly arbitrary aspects of SVMs (e.g., the diagonal of
the quadratic form), and it allows us to derive novel SVM approaches. Although we



are the first to make the analogy between SVMs and electrostatic systems, previous
researchers have used electrostatic nonlinearities in pattern recognition [1] and a
mechanical interpretation of SVMs was introduced in [9].

In this paper, we focus on the classification of an input vector x ∈ X into one of
two categories, labeled “+” and “−”. We assume a supervised learning paradigm
in which N training examples are available, each example i consisting of an input
xi and a label yi ∈ {−1,+1}. We will introduce three electrostatic models that
are directly analogous to existing machine-learning (ML) classifiers, each of which
builds on and generalizes the previous. For each model, we describe the physical
system upon which it is based and show its correspondence to an ML classifier.

1.1 Electrostatic model 1: Uncoupled point charges

Consider an electrostatic system of point charges populating a space X ′ homologous
to X . Each point charge corresponds to a particular training example; point charge
i is fixed at location xi in X ′, and has a charge of sign yi. We define two sets of
fixed charges: S+ =

{

xi | yi = +1
}

and S− =
{

xi | yi = −1
}

. The charge of point
i is Qi ≡ yi αi, where αi ≥ 0 is the amount of charge, to be discussed below.

We briefly review some elementary physics. If a unit positive charge is at x in
X ′, it will be attracted to all charges in S− and repelled by all charges in S+. To
move the charge from x to some other location x̃, the attractive and repelling forces
must be overcome at every point along the trajectory; the path integral of the force
along the trajectory is called the work and does not depend on the trajectory. The
potential at x is the work that must be done to move a unit positive charge from a
reference point (usually infinity) to x.

The potential at x is ϕ (x) =
∑N

j=1
Qj G

(

xj ,x
)

, where G is a function of the

distance. In electrostatic systems with point charges, G (a, b) = 1/ ‖a − b‖
2
. From

this definition, one can see that the potential at x is negative (positive) if x is in
a neighborhood of many negative (positive) charges. Thus, the potential indicates
the sign and amount of charge in the local neighborhood.

Turning back to the ML classifier, one might propose a classification rule for some
input x that assigns the label “+” if ϕ(x) > 0 or “−” otherwise. Abstracting
from the electrostatic system, if αi = 1 and G is a function that decreases suffi-
ciently steeply with distance, we obtain a nearest-neighbor classifier. This potential
classifier can be also interpreted as Parzen windows classifier [9].

1.2 Electrostatic model 2: Coupled point charges

Consider now an electrostatic model that extends the previous model in two re-
spects. First, the point charges are replaced by conductors, e.g., metal spheres.
Each conductor i has a self–potential coefficient, denoted Pii, which is a measure
of how much charge it can easily hold; for a metal sphere, Pii is related to sphere’s
diameter. Second, the conductors in S+ are coupled, as are the conductors in S−.
“Coupling” means that charge is free to flow between the conductors. Technically,
S+ and S− can each be viewed as a single conductor.

In this model, we initially place the same charge ν/N on each conductor, and allow
charges within S+ and S− to flow freely (we assume no resistance in the coupling
and no polarization of the conductors). After the charges redistribute, charge will
tend to end up on the periphery of a homogeneous neighborhood of conductors,
because like charges repel. Charge will also tend to end up along the S+–S−

boundary because opposite charges attract. Figure 1 depicts the redistribution of
charges, where the shading is proportional to the magnitude αi. An ML classifier
can be built based on this model, once again using ϕ(x) > 0 as the decision rule



for classifying an input x. In this model, however, the αi are not uniform; the
conductors with large αi will have the greatest influence on the potential function.
Consequently, one can think of αi as the weight or importance of example i. As we
will show shortly, the examples with αi > 0 are exactly support vectors of an SVM.
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Figure 1: Coupled conductor system following charge redistribution. Shading re-
flects the charge magnitude, and the contour indicates a zero potential.

The redistribution of charges in the electrostatic system is achieved via minimization
of the Coulomb energy. Imagine placing the same total charge magnitude, m, on
S+ and S− by dividing it uniformly among the conductors, i.e., αi = m/ |Syi |. The
free charge flow in S+ and S− yields a distribution of charges, the αi, such that
Coulomb energy is minimized.

To introduce Coulomb energy, we begin with some preliminaries. The potential at
conductor i, ϕ(xi), which we will denote more compactly as ϕi, can be described

in terms of the coefficients of potential Pij [10]: ϕi =
∑N

j=1
Pij Qj , where Pij is the

potential induced on conductor i by charge Qj on conductor j; Pii ≥ Pij ≥ 0 and
Pij = Pji. If each conductor i is a metal sphere centered at xi and has radius ri

(radii are enforced to be small enough so that the spheres do not touch each other),
the system can be modeled by a point charge Qi at xi, and Pij = G

(

xi,xj
)

as in
the previous section [10]. The self-potential, Pii, is defined as a function of ri. The
Coulomb energy is defined in terms of the potential on the conductors, ϕi:

E =
1

2

N
∑

i=1

ϕi Qi =
1

2
QT P Q =

1

2

N
∑

i,j=1

Pij yi yj αi αj .

When the energy minimum is reached, the potential ϕi will be the same for all
connected i ∈ S+ (i ∈ S−); we denote this potential ϕS+ (ϕS−).

Two additional constraints on the system of coupled conductors are necessary in
order to interpret the system in terms of existing machine learning models. First,
the positive and negative potentials must be balanced, i.e., ϕS+ = −ϕS− . This
constraint is achieved by setting the reference point of the potentials through b,

b = −0.5 (ϕS+ + ϕS−), into the potential function: ϕ (x) =
∑N

i=1
Qi G

(

xi,x
)

+ b.
Second, the conductors must be prevented from reversing the sign of their charge,
i.e., αi ≥ 0, and from holding more than a quantity C of charge, i.e., αi ≤ C. These



requirements can be satisfied in the electrostatic model by disconnecting a conductor
i from the charge flow in S+ or S− when αi reaches a bound, which will subsequently
freeze its charge. Mathematically, the requirements are satisfied by treating energy
minimization as a constrained optimization problem with 0 ≤ αi ≤ C.

The electrostatic system corresponds to a ν–support vector machine (ν–SVM) [9]
with kernel G if we set C = 1/N . The electrostatic system assures that

∑

i∈S+ αi =
∑

i∈S− αi = 0.5 ν. The identity holds because the Coulomb energy is exactly the
ν–SVM quadratic objective function, and the thresholded electrostatic potential
evaluated at a location is exactly the SVM decision rule. The minimization of
potentials differences in the systems S+ and S− corresponds to the minimization
of slack variables in the SVM (slack variables express missing potential due to the
upper bound on αi). Mercer’s condition [6], the essence of the nonlinear SVM
theory, is equivalent to the fact that continuous electrostatic energy is positive, i.e.,
E =

∫

G (x,z) h (x) h (z) dx dz ≥ 0. The self-potentials of the electrostatic
system provide an interpretation to the diagonal elements in the quadratic objective
function of the SVM. This interpretation of the diagonal elements allows us to
introduce novel kernels and novel SVM methods, as we discuss later.

1.3 Electrostatic model 3: Coupled point charges with battery

In electrostatic model 2, we control the magnitude of charge applied to S+ and S−.
Although we apply the same charge magnitude to each, we do not have to control
the resulting potentials ϕS+ and ϕS− , which may be imbalanced. We compensate
for this imbalance via the potential offset b. In electrostatic model 3, we control the
potentials ϕS+ and ϕS+ directly by adding a battery to the system. We connect
S+ to the positive pole of the battery with potential +1 and S− to the negative
pole with potential −1. The battery ensures that ϕS+ = +1 and ϕS− = −1 because
charges flow from the battery into or out of the system until the systems take on
the potential of the battery poles. The battery can then be removed. The potential
ϕi = yi is forced by the battery on conductor i. The total Coulomb energy is the
energy from model 2 minus the work done by the battery. The work done by the
battery is

∑

i≤N yiQi =
∑

i≤N αi. The Coulomb energy is

1

2
QT P Q −

N
∑

i=1

αi =
1

2

N
∑

i,j=1

Pij yi yj αi αj −

N
∑

i=1

αi .

This physical system corresponds to a C–support vector machine (C–SVM) [2, 11].
The C–SVM requires that

∑

i yiαi = 0; although this constraint may not be fulfilled
in the system described here, it can be enforced by a slightly different system [4]. A
more straightforward relation to the C–SVM is given in [9] where the authors show
that every ν–SVM has the same class boundaries as a C–SVM with appropriate C.

2 Comparison of existing and novel models

2.1 Novel Kernels

The electrostatic perspective makes it easy to understand why SVM algorithms can
break down in high-dimensional spaces: Kernels with rapid fall-off induce small po-
tentials and consequently, almost every conductor retains charge. Because a charged
conductor corresponds to a support vector, the number of support vectors is large,
which leads to two disadvantages: (1) the classification procedure is slow, and (2) the
expected generalization error increases with the number of support vectors [11]. We
therefore should use kernels that do not drop off exponentially. The self–potential



permits the use of kernels that would otherwise be invalid, such as a generalization

of the electric field: G
(

xi,xj
)

:=
∥

∥xi − xj
∥

∥

−l

2
and G

(

xi,xi
)

:= r−l
i = Pii, where

ri the radius of the ith sphere. The ris are increased to their maximal values, i.e.
until they hit other conductors (ri = 0.5minj

∥

∥xi − xj
∥

∥

2
). These kernels, called

“Coulomb kernels”, are invariant to scaling of the input space in the sense that
scaling does not change the minimum of the objective function. Consequently, such
kernels are appropriate for input data with varying local densities. Figure 2 depicts
a classification task with input regions of varying density. The optimal class bound-
ary is smooth in the low data density regions and has high curvature in regions,
where the data density is high. The classification boundary was constructed using

a C-SVM with a Plummer kernel G
(

xi,xj
)

:=
(

∥

∥xi − xj
∥

∥

2

2
+ ǫ2

)−l/2

, which is an

approximation to our novel Coulomb kernel but lacks its weak singularities.

Figure 2: Two class data with a dense region and trained with a SVM using the
new kernel. Gray-scales indicate the weights — support vectors are dark. Boundary
curves are given for the novel kernel (solid), best RBF-kernel SVM which overfits
at high density regions where the resulting boundary goes through a dark circle
(dashed), and optimal boundary (dotted).



2.2 Novel SVM models

Our electrostatic framework can be used to derive novel SVM approaches [4], two
representative examples of which we illustrate here.

2.2.1 κ–Support Vector Machine (κ–SVM):
We can exploit the physical interpretation of Pii as conductor i’s self–potential. The
Pii’s determine the smoothness of the charge distribution at the energy minimum.
We can introduce a parameter κ to rescale the self potential – Pnew

ii = κ P old
ii .

κ controls the complexity of the corresponding SVM. With this modification, and
with C = ∞, electrostatic model 3 becomes what we call the κ–SVM.

2.2.2 p–Support Vector Machine (p–SVM):
At the Coulomb energy minimum the electrostatic potentials equalize: ϕi − yi =
0, ∀i (y is the label vector). This motivates the introduction of potential difference,
1

2
‖PQ + y‖

2

2
= 1

2
QT P T PQ + QT P T y + 1

2
yT y as the objective. We obtain

min
α

1

2
αT Y P T P Y α − 1T Y P Y α

subject to 1T P Y α = 0 , |αi| ≤ C,

where 1 is the vector of ones and Y := diag(y). We call this variant of the
optimization problem the potential-SVM (p-SVM). Note that the p-SVM is similar
to the “empirical kernel map” [9]. However P appears in the objective’s linear term
and the constraints. We classify in a space where P is a dot product matrix. The
constraint 1T P Y α = 0 ensures that the average potential for each class is equal.

By construction, P T P is positive definite; consequently, this formulation does not
require positive definite kernels. This characteristic is useful for problems in which
the properties of the objects to be classified are described by their pairwise proxim-
ities. That is, suppose that instead of representing each input object by an explicit
feature vector, the objects are represented by a matrix which contains a real num-
ber indicating the similarity of each object to each other object. We can interpret
the entries of the matrix as being produced by an unknown kernel operating on
unknown feature vectors. In such a matrix, however, positive definiteness cannot
be assured, and the optimal hyperplane must be constructed in Minkowski space.

3 Experiments

UCI Benchmark Repository. For the representative models we have intro-
duced, we perform simulations and make comparisons to standard SVM variants.
All datasets (except “banana” from [7]) are from the UCI Benchmark Repository
and were preprocessed in [7]. We did 100-fold validation on each data set, restricting
the training set to 200 examples, and using the remainder of examples for testing.
We compared two standard architectures, the C–SVM and the ν–SVM, to our novel
architectures: to the κ–SVM, to the p–SVM, and to a combination of them, the
κ–p–SVM. The κ–p–SVM is a p–SVM regularized like a κ–SVM. We explored the
use of radial basis function (RBF), polynomial (POL), and Plummer (PLU) kernels.
Hyperparameters were determined by 5–fold cross validation on the first 5 training
sets. The search for hyperparameter was not as intensive as in [7].

Table 1 shows the results of our comparisons on the UCI Benchmarks. Our two
novel architectures, the κ–SVM and the p–SVM, performed well against the two
existing architectures (note that the differences between the C– and the ν–SVM
are due to model selection). As anticipated, the p–SVM requires far fewer sup-
port vectors. Additionally, the Plummer kernel appears to be more robust against
hyperparameter and SVM choices than the RBF or polynomial kernels.



C ν κ p κ-p C ν κ p κ-p
thyroid heart

RBF 6.4 9.4 7.7 5.4 8.6 21.4 19.1 17.9 22.4 17.8
POL 22.8 12.6 7.0 13.3 6.9 20.4 20.4 19.3 23.0 19.3
PLU 6.1 6.2 6.1 5.7 6.1 16.3 16.3 16.3 17.4 16.3

breast–cancer banana
RBF 33.6 31.6 33.8 32.4 33.7 13.2 36.7 13.2 11.6 13.4
POL 36.0 25.7 29.6 27.1 29.1 35.3 35.0 11.5 22.4 11.5
PLU 33.4 33.1 33.4 30.6 33.4 15.7 15.7 15.7 21.9 15.7

german
RBF 28.7 29.3 29.0 27.8 28.8
POL 33.7 29.6 26.2 31.8 26.2
PLU 28.8 28.5 33.3 27.1 33.3

Table 1: Mean % misclassification on 5 UCI Repository data sets. Each cell in
the table is obtained via 100 replications splitting the data into training and test
sets. The comparison is among five SVMs (the table columns) using three kernel
functions (the table rows). Cells in bold face are the best result for a given data set
and italicized the second and third best.

Pairwise Proximity Data. We applied our p–SVM and the generalized SVM
(G–SVM) [3] to two pairwise-proximity data sets. The first data set, the “cat cor-
tex” data, is a matrix of connection strengths between 65 cat cortical areas and was
provided by [8], where the available anatomical literature was used to determine
proximity values between cortical areas. These areas belong to four different coarse
brain regions: auditory (A), visual (V), somatosensory (SS), and frontolimbic (FL).
The goal was to classify a given cortical area as belonging to a given region or
not. The second data set, the “protein” data, is the evolutionary distance of 226 se-
quences of amino acids of proteins obtained by a structural comparison [5] (provided
by M. Vingron). Most of the proteins are from four classes of globins: hemoglobin-ff
(H-ff), hemoglobin-fi (H-fi), myoglobin (M), and heterogenous globins (GH). The
goal was to classify a protein as belonging to a given globin class or not. As Table 2
shows, our novel architecture, the p–SVM, beats out an existing architecture in the
literature, the G–SVM, on 5 of 8 classification tasks, and ties the G–SVM on 2 of
8; it loses out on only 1 of 8.

cat cortex protein data
Reg. V A SS FL Reg. H-α H-β M GH

Size — 18 10 18 19 — 72 72 39 30
G-SVM 0.05 4.6 3.1 3.1 1.5 0.05 1.3 4.0 0.5 0.5
G-SVM 0.1 4.6 3.1 6.1 1.5 0.1 1.8 4.5 0.5 0.9
G-SVM 0.2 6.1 1.5 3.1 3.1 0.2 2.2 8.9 0.5 0.9
p-SVM 0.6 3.1 1.5 6.1 3.1 300 0.4 3.5 0.0 0.4
p-SVM 0.7 3.1 3.1 4.6 1.5 400 0.4 3.1 0.0 0.9
p-SVM 0.8 3.1 3.1 4.6 1.5 500 0.4 3.5 0.0 1.3

Table 2: Mean % misclassifications for the cat-cortex and protein data sets using
the p–SVM and the G–SVM and a range of regularization parameters (indicated in
the column labeled “Reg.”). The result obtained for the cat-cortex data is via leave-
one-out cross validation, and for the protein data is via ten-fold cross validation.
The best result for a given classification problem is printed in bold face.



4 Conclusion

The electrostatic framework and its analogy to SVMs has led to several important
ideas. First, it suggests SVM methods for kernels that are not positive definite.
Second, it suggests novel approaches and kernels that perform as well as standard
methods (will undoubtably perform better on some problems). Third, we demon-
strated a new classification technique working in Minkowski space which can be used
for data in form of pairwise proximities. The novel approach treats the proximity
matrix as an SVM Gram matrix which lead to excellent experimental results.

We argued that the electrostatic framework not only characterizes a family of
support-vector machines, but it also characterizes other techniques such as nearest
neighbor classification. Perhaps the most important contribution of the electro-
static framework is that, by interrelating and encompassing a variety of methods,
it lays out a broad space of possible algorithms. At present, the space is sparsely
populated and has barely been explored. But by making the dimensions of this
space explicit, the electrostatic framework allows one to easily explore the space
and discover novel algorithms. In the history of machine learning, such general
frameworks have led to important advances in the field.
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