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ABSTRACT ods [7, 8, 9] have the restriction that the number of source
and mixture signals must be equal. In many real world ap-
plications, only one mixture is available. For example hwit

direct sequence code division multiple access (DS-CDMA)
mobile communication, signals from multiple users must be
extracted from a single mixture time series. Further, many
real world sound recordings (e.g., bird songs, music, traffi

We address the problem of extracting multiple independent
sources from a single mixture signal. Standard independent
component analysis (ICA) approaches falil if the number of
sources is greater than the number of mixtures. Sjeese-
decomposition methdd] has been proposed for this case.
It relies on a _dlctlon_ary of_at_omlc signals and recovers the or listening devices used in espionage) use only one or two
degree to which various dictionary atoms are_present n th_emicrophones. Standard ICA approaches cannot be used in
_m|xture. We show that the sparse—decomposm(_)n_ mgthod ISt ese cases.
:(2:?ﬁteasil/ﬁpgrrg\{sgtgirc??:rfginZgr\nlgﬂ)élgigrea::nc;?rge;npUtZ_ In contrast, the human auditory system is able to distin-

: y - bon guish multiple sound sources from two mixtures—the ears.
ing targets are the dot product of the mixture and atom vec-

. . . .~ It can even extract sources from monaural recordings. In
tors. The SVM perspective provides a new interpretation g

of the sparse-decomposition method’s hvberoarameter aniome cases, separation of signals is easy because thessignal
P P . yperp " ccur in different frequency bands (e.g., bird songs and an
allows us to generalize and improve the method. Most im-

. ) ) oncoming bus), but many times simple physical distinctions
portantly, the source signals do not have to be identical to g bus) y Pie pny

o are inadequate to recover the signals. Consider a perfor-
dictionary atoms, but rather we can accommodate a many- q 9 P

. . - mance by a symphony orchestra. The conductor is able to
to-one mapping of source signals to dictionary atoms—a

classification of sorts—characterized by a known non-linea isolate individual melody lines, instruments, or even musi
. ) y ... cians from the ensemble, whereas a haive audience member
transformation with unknown parameters. The limitation

of the SVM perspective is that it cannot recover the si- will not. The difference between the conductor and the au-
PETSpective IS It Ve S19° gience member is the conductor’s knowledge and familiar-
nal strength of an atom in the mixture; rather, it can only

recover whether or not rticular atom w resent Inity with the sound patterns that constitute the performance
eicoeriementg vse zhovc\)/ tﬁart)acl)ufl:n%dilocan r?:n?jlzsc?ifﬁ.cult One could even imagine that the conductor has a dictionary

P o . of soundatoms—canonical or prototypical musical phrases
problems involving classification of sources. Our model

. . . and timbres—and identification of components comes by
may be particularly useful for speech signal processing and

. o : isolating th ms from the mixture.
CDMA-based mobile communication, where in both cases solating the atoms from the mixture .
. . : . Several ICA approaches have adopted the idea of us-
we have knowledge about the invariances in the signal.

ing a dictionary to extract multiple sources from fewer or
even one mixture [1, 10, 11]. The dictionary can be based
1. INTRODUCTION on primitive functions (e.g., Fourier bases, wavelet pack-
ages, or Gabor functions) [1], predefined based on prior
Independent component analysis (ICA) [2, 3, 4] attempts knowledge, or can be trained to fit the problem [12, 11].
to recover multiplesourcesignals that have been combined Zibulevsky and Pearlmutter [1] specify not only a dictio-
into one or moramixturesignals. Most ICA algorithms as-  nary, but also a prior that enforces sparseness—i.e., an ex-
sume that the sources are mutually statistically indepeinde pectation as to how many sources will be present simul-
and that mixtures are linear combinations of the sources.taneously. All these approaches are restricted to mixtures
Well known ICA methods like “infomax” [5], maximum  consisting of linearly superimposed dictionary atomss thi
likelihood approaches [6], entropy and cumulant based methrestriction is necessary to avoid ambiguity in the problem.



In this paper we show that theparse-decomposition
methodof Zibulevsky and Pearlmutter can be reinterpreted
ase-support vector regression-§VR) [13], when there is
a single mixture and a Laplacian prior. The&SVR anal-
ogy provides a novel interpretation of the sparse-decom-
position method’s hyperparameter that determines the de-
gree of sparseness. The analogy also allows one to view
the sparse-decomposition method as one member of a fam-
ily of similar algorithms. Most notably, the family include
a variant of the sparse-decomposition method that allows
for non-linear transformations of the sources before tmey a
mixed, and another non-linear transformation in the preces
of identifying dictionary atoms in the mixture.

App”cations of the approach include Speech recogni- Flg 1. The data generation process. Four atoms fromthe
tion, where the dictionary consists of pretrained or typica dictionaryS are weighted by an absolute factor larger
Speech waveforms []_2], and DS-CDMA mobile communi- than zero and added together with noise resulting in the
cation, where the dictionary consists of spreading seqggenc ~ mixture. The goal is to find the weighting factors or at
of the users. One benefit of the non-linearities incorpo- least to detect an atom being present in the mixture.
rated into the approach is that—as we will explain in de-

tail later—they can be used to achieve some degree of in-properties are achieved by a Bayesian approach in which (1)
variance to irrelevant characteristics of the speech $igna js the ikelihoodp (x | ¢, S) and (2) is the priop (c). Thus,

We demonstrate our approach with experiments using noisyihe approach tries to maximize the posterior

single mixtures and speech tasks.

HE S

p(c]x,8) x p(x]e8)p(c),

2. SPARSE-DECOMPOSITION VIEWED ASe-SVR where we use &” because we omit the constant normal-
ization factor in the denominator of Bayes rule. Given the

In this section, we review the sparse-decomposition methodGaussian noise model, the likelihood is
introduced in [1], focusing on the case of a single mixture 1 N
signal. We will also describe the relation between sparse p(x|c,S) o exp <—— (x — Sc) > -

" . 202
decomposition ané-support vector regressioa-SVR). 7
To enforce sparseness of the coefficients, a Laplacian prior
. . _ P ) .
2.1. The sparse-decomposition M ethod for ¢ is used withfef], = 3_;-; |e;| we have:
€
Denote the mixture signal by € R, which—in the case p(e) o exp (_ﬁ ||C||1) .
of speech—might correspond to a time serie€ afiscrete
time steps. We assume a dictionary matx,c RE*P,
whose columns consist of the atomic signals of length (| x,8) o exp 171 (x — S¢) + ¢ |le|
L. We assume a generative process in which the mixture is ’ o2\ 2 Yy)
created by first choosing a set of dictionary atoms and then The solution,¢, is obtained by maximum a posteriori
(MAP) search. Taking the log of the posterior, flipping its

combining them linearly with noise:
p sign, and ignoring irrelevant constant terms and factoes, w
x = Sc+ v = Zcisi + v, (1) obtain the minimization problem
i=1

Consequently, the posterior is

¢=argmin 1(x — Sc)’ + e XL el

wherec € R is a vector of weighting coefficients, one per By standard techniques, we can turn this unconstrained op-
atom,v ~ N (0,0?) is anL-dimensional i.i.d. additive  timization problem into a constrained optimization prable
Gaussian noise vector, aBgtheith atom in the dictionary.  in which c is split into two vectorse™ andc~. The MAP
See Figure 1 for anillustration of the generative process th so|ution{ct‘r’ cl} is
produces the mixture. 1 .

The goal of the sparse-decomposition method is to de-  argmin.; .- (¢t —c7) 8"S(ct —c7) -
termine the coefficient vectoé, that satisfies two proper- T

+ - T (ot -

ties: (1)x must be well approximated by, and (2)¢ is x'S(ch—c) + el (c" +e7)
sparse, i.e., it has elements of small magnitude. These two s.t. 0< cj, ¢, <C, (2)



whereT is the transposition operatdrjs the vector of ones,  appear in above optimization formulation.
andC'is an upper bound that can serve as an additional con-

straint on the solution (which was not part of the original 5 5 The relationship between the spar se-decomposition

formulation by Zibulevsky and Pearlmutter). In the solu-

tion, & = ¢+ — ¢, allowing us to split the positive and
negative elements @finto two vectors.

We will show thatthis formulation ise-support vector
regression{-SVR)13]. We give a brief overview of-SVR.

2.2. e-Support Vector Regression

method and e-SVR

Consider data for anSVR consisting ofP training exam-
ples. For examplé, the inputz’ € R” is dictionary atom
S;, and the target for the examplg, is the dot product be-
tween the mixturex and dictionary aton$;: y; = x’S; =
(x,S;). If we fix o = 0 in this situation, optimization prob-
lem (2) is identical to optimization problem (3) because in

e-SVR is a supervised approach to regression in which we(3) the constrainl” (¢ — ¢~) = 0 is removed.

are giventraining datf(z’, ;) , ... , (z*,yp) }, wherez’ €
R andy; is a scalar. The goal is to produce a functibn,
such thath (z%) closely approximateg;. In the linear for-
mulation ofe-SVR, h (z') = (w,z') + o, wherew € RF,
o € R, and{(.,.) denotes the dot product. TheSVR at-
tempts to obtain a “flat” function by minimizing||w/||?, but

subject to the constraint that the fit is good enough, as quan-

tified by the constrainfy; — f (z°)| < e+¢&; foralli. eisa

measure of how accurate the fit needs to be, or intuitively, a

measure of the noise in the data. Hack variableg; > 0
allow for the fact that it may not be possible to find &n
that satisfies the accuracy criterion. However, to ensure

that the deviations are minimal, the optimization attempts
to minimize the magnitude of the slack variables as well,

specifically, the constrained optimization is over the obje
tive functiong||w||?+C||¢]|1, whereC determines the trade

off between the flatness of the function and the tolerance of

prediction errors.

It turns out that the-SVR has an alternative but entirely
equivalent formulation in which each examplis assigned
a coefficient,c;, andw is defined with these coefficients:
w = Zf:l c; z'. Consequentlyh(z) = Zf:l ci(z',z) +
o. Thez' for whiche; # 0 are calledsupport vectorsin this
formulation, learning involves an optimization problem, t
search for thg¢; } that minimize} Y7, ¢; ¢; (2, 27) +
62?:1 leil — Ele yi ¢; subject to—C < ¢; < C.
To eliminate the absolute-value function from the objextiv
function, a standard technique is used to split4tiato pos-
itive and negative components; andc;: ¢; = ¢ — ¢} .
Rather than viewing the constamtas a free parameter of
h, the degree of freedom provided lpyis used to force
S, ¢i = 0. One obtains the optimization problem:

Lo e o) -
yT (c+ - c_) + e1T (c"' + c_)
s.t. 0<cf,c; <C 3)
17 (c*—c*) =0,
whereZ is the matrix formed byz': Z; = z'. If the o

is fixed to zero then the constra@f:1 c¢; = 0 does not

We can adjusb as well through the fule-SVR. To in-
clude o into the sparse-decomposition method means that
the correlation coefficientg possess a mean# 0. ois an
approximation fory and can be determined by

r —e for 0<c¢f<C

6=8Tx — SI'S¢ +¢ for O0<c¢; <C.

o may be useful if; = SI'x > o. For exampley > o may

be observed if mixturg and all dictionary atomS; possess

the same end sequence of components. The dot product of

this end sequence with itself can be removed from gach
Thee-SVR formulation gives an interpretation to the hy-

perparameter in the sparse-decomposition method. It is a

measure of the noise level in the data, and indirectly affect

the number o€; that are significantly non-zero. As depicted

in Figure 2, each example will have a targgt, that either

lies inside or outside thetube The closer a targef; is to

zero, the more nearly orthogonal is the mixturéo atom

S;, and the less likely atornis to be present in the mixture.

Thus, thee-tube distinguishes atoms that are likely to be rel-

evant from those likely to be irrelevant. It turns out thay an

examplei lying outside thes-tubewill have eitheré; = C

or é; = —C. In the sparse-decomposition formulatief,

indicates the degree to which a dictionary atois: present.

3. NON-LINEAR FORMULATION

In the e-SVR framework also a non-linear approximation
for y is possible by introducing a non-linear keri¢h, b),
wherea,b € RY. The dot productgz’,z’) in the e-
SVR are replaced by(z!,z’), or in matrix notationZ” Z

is replaced by the kernel matriK with K;; = k(z',z).
The interpretation of this kernel is that thfe vectorsz?
are mapped by a functiof into a feature space. The ker-
nel is the scalar product in the feature spaééa,b) =
(¢(a), p(b)).

We introduce two generalizations of the linear sparse-
decomposition method to a non-linear approach. In both
cases the dictionary aton%; are mapped into a feature
space, i.e., we use a non-linear kernel.
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Fig. 2. The linear—support vector regression cor-
responding to the sparse-decomposition method.

Each “x” in the figure corresponds to a single Fig. 4. The data generation process with atom transfor-
training example in the-SVR model. The hori- mations. In contrast to the sparse-decomposition method
zontal axis is a one-dimensional depiction of the (see Figure 1) the atomic sources are transformed before
input space, and the vertical axis is the target out- they get superimposed.

put. The grey area, thetube, specifies the range
of target outputs that are not significantly differ-
ent from zero. The exampléghat lie outside the
e-tube will have|é;| = C.

Let f(S) be the transformed dictionary, that is the matrix
with vector components (S)], = f; (S;). We minimize

fi(8)"x — fi(S)" F(S)n|
3.1. Non-linear approximation of thelinear correlations
We assume that we know tlfes except for a parametkg:

ST'S is substituted by kernel matrik (K;; = k(S;, S;)). fi(a) = g(a; k;). This means alf; stem from one class of
Because of equation (1) we can recover the MAP coeffi- functions. Further must be assumed that functions from this
cientsc from the non-linear MAP coefficients class do not change certain features of the original atoms.
The transformation is invariant with respect to a special fe
¢ =~ (STS)f1 Kk — (STS)f1 s”d, ture. ¢ generates this feature and we get
where the %"-sign indicates an approximation because ¢(fi(S:) = ¢(Si) .
and the noise vectar are presents; = C org; = —C

Our goal is to approximate the mixture featyrex) lin-
early by the atom features(S;) in the feature space. Thus,
the mixture feature is assumed to be the weighted sum of
the atom features for atoms that are present in the mixture.

Y 'é\f:rc,x That can be formulated as
E+s P P
0(s) > : . o(x) = Yo mid(fi(S0) = Y mio(S) -
A _— i=1 =1
Ki =C

The most notable fact is that the unknown transformations
fi are removed from our approximation problery. indi-
cates whether mixture and atomS; share the same fea-
tures or not: larges; implies thatx andS; are mapped to
similar (correlated) feature vectors.

indicates the presence of dictionary aténm the mixture
(see Figure 3).

Fig. 3. The non-lineare-SVR. The dictionary
atomsS; are mapped by into a feature space.

4. EXPERIMENTS

3.2. Transformed Atomic Sources
4.1. Non-linear approximation of thelinear correlations

Each dictionary aton$; is transformed by a mapping
(from R into RY) before it gets superimposed with other
transformed atoms to generate the mixture (see Figure 4)
Equation (1) becomes

We use a dictionary consisting of 64 atoms of length 128.
The atoms vary in their frequencies and their shape (e.qg.
sinuidal, triangular, rectangular, and asymmetric triang
lar). On average we choose 4.5 dictionary atoms being presen
p in one mixture. The nonzero coefficientsare randomly
x = Z“i £i(Si) + v. chosen fron0.1,1.0] U [-1.0, —0.1]. We (1) added Gaus-

et sian noise with variance0 to each mixture component, (2)



added noise frequencies to the whole mixture (sinuidal with 0.4. The results are shown in Table 2. The non-linear map-
amplitude form0; 0.2]), and (3) made phase shifts for each ping by the local variance formulas was able to extract the
atom (randomly 0-20 % of the period). The values for hy- invariant and, therefore, to classify an atom as being ptese
perparametersandC are chosen through a validation set. or not.

They are adjusted so that the average number of sources

which are not recognized is below 0.5. In doing so, we linear | AV1 | AV2 | AV3
upper bounded the error which results from not detecting Task 1:a] | failed | 0.63 | 0.72] 0.99
present sources. To evaluate the performance, we count the Task 2:|a;| | failed | 5.41| 7.38 | failed
number of sources which were wrongly detected. Task 3:|a;|* | failed | 0.55| 0.84 | 2.37

The linear sparse-decomposition method leads to an er—T ble2 A 100 mi ber of |
ror of 35.32. Table 1 shows the result for the non-linear ker- dat et .d \t/erag? (?r/]erl_ mlxtureszjnum er o_t_wrongt%/ d
nelk(a,b) = (k +a- b)? with different values fork: and etected atoms for the linear sparse-decomposition metho

p. The non-linear kernel leads better results than the lin- (‘linear”) and three different methods measuring the local

ear sparse-decomposition method. This demonstrates thafarance (AVI-AV3Y).
non-linear kernels work even for linear problems.

p\ k[ 10 10° 108 107
2 | 35.14| 35.21| 35.23]| 35.23 4.2.2. Speech Data
5 | 35.22| 35.20| 35.23| 35.23
10 | 35.30| 35.20| 35.22| 35.23
20 | 35.25| 35.14| 35.21| 35.23
30 | 35.40| 35.19| 35.21| 35.23

We considered transformations which shift the dictionary
atoms, where each atom is shifted differently. As an invari-
ant we use the power spectrum. The dictionary entries are
5 spoken words (“hid”, “head”, “had”, “hud”, and “hod")
Table 1. Average (over 100 trials) of wrongly detected spoken by 20 (_jifferentspeakers (dictionary size is 100& Th
atoms for kernelé(a, b) = (k + a-b)” (the linear result fjatawas obtalngd froar eas/ speech/ dat abasg/ hvd/
was 35.32). in the Al-Repository ats. crmu. edu. The speech is sam-
pled at 10kHz.

We did not restrict the shifts of the atoms. The coeffi-
cientse; are chosen fronD.2, 0.8]. The power spectrum is
obtained by using fast Fourier transformation with shdtin
Hanning window of size 256. The first 20 low frequencies
4.2.1. Artificial Data were set to zero. The additive Gaussian noise had standard

deviation ofc = 0.05 for task 1 (T1) andr = 0.2 for task
We consider the following class of componentwise transfor- 2 (T2).

mations:[f;(a)]; = |a;|""*. They produce componerits0. We compared three methods: PS1 is the power spec-
As invariant we consider the local variance which remains trum of the original mixture, PS2 is the power spectrum of

the same even if negative values are transformed into posithe mixture where absolute mixture values smaller than 0.05

4.2. Transformed Atomic Sources

tive values. To‘c?mpute the Iozcal variance we use are set to zero, and PS3 is the power spectrum of the mix-
(2, +1)°t Ei;’_,i (a; —aj)”, where ture where absolute mixture values smaller that 0.1 are set
a; = (20; + 1)1 Eii;'i_zi a;. We used 3 different values 0 zero. As in previous experiments we kee_tp the average
for I;: I, = 8 (AV1), I, = 10 (AV2), I3 = 20 (AV3). number of not detected atoms below a certain bound: 0.64

We generated 100 dictionary atoms of length 1024. To for T1 and 0.74 for T2.
produce an atom we segmented the 1024 length vector into  The linear approach completely failed to solve the task.
random segments of length between 1 and 64. Each Seg]'he results for the nonlinear transformation (power spec-
ment consists of a scaled (fropr-0.8, —0.2] U [0.2,0.8]) trum) are given in Table 3. Figure 5 shows a atomic source
periodic function from previous experiment. To each seg- detection example for PS3.
ment component a constant betwderuc, +ac] is added.
Figure 4 depicts the data generation process. 5. CONCLUSION

Task 1 usefu; | and task 2 uses;, and task 3 usds;|*
with w randomly from[0.5;2.0] as transformation. We set In this paper we reinterpreted the sparse-decompositien me
ac = 5.0fortask 1 andic = 0.5 fortask 2 and 3. Thetrans- thod for a single mixture assupport vector regressioa-(
formations are mixed as in previous experiment and Gaus-SVR). Thes-SVR analogy supplied a new view on the sparse-
sian noise hag = 0.01. As in previous experiment we decomposition method’s hyperparameter and allowed to in-
keep average not detected sources below a certain boundroduce family of similar algorithms of which the sparse-de



linear | PS1| PS2| PS3
Task 1|| failed | 1.82| 1.72 | 1.50
Task 2 || failed | 5.06| 4.82 | 5.10

Table 3. Average number of wrongly detected atoms for the [3]

linear sparse-decomposition method (“linear”), and three
non-linear transformation into the power spectrum (“PS1”
to “PS3"). The error values are an average of 100 mixtures.

(4]

(5]

(6]

[7]

Fig. 5. Example for the method PS3. It detected 6 dictionary
atoms in mixture: three were correctly and three wrongly de-

tected. First line: three dictionary entries which are prgs

(but shifted) in the mixture. Second line: (left) the mixur [g]

without noise and (right) the mixture. Third line: wronglg-d

tected dictionary entries out of 100.

composition method is one member. This family includes
methods that allow for non-linear transformations of the
sources before they get mixed, and another non-lineartrans
formation in the process of identifying dictionary atoms in
the mixture. One benefit of the non-linearities incorpalate

(9]

10]

into the approach is that they can be used to achieve some

degree of invariance to irrelevant characteristics of aligin

We demonstrated our approach with experiments using noiS){ll]

single mixtures and speech datasets.
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