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ABSTRACT

We address the problem of extracting multiple independent
sources from a single mixture signal. Standard independent-
component analysis (ICA) approaches fail if the number of
sources is greater than the number of mixtures. Thesparse-
decomposition method[1] has been proposed for this case.
It relies on a dictionary of atomic signals and recovers the
degree to which various dictionary atoms are present in the
mixture. We show that the sparse-decomposition method is
in fact a support-vector machine (SVM). The training inputs
for the SVM are the dictionary atoms, and the correspond-
ing targets are the dot product of the mixture and atom vec-
tors. The SVM perspective provides a new interpretation
of the sparse-decomposition method’s hyperparameter, and
allows us to generalize and improve the method. Most im-
portantly, the source signals do not have to be identical to
dictionary atoms, but rather we can accommodate a many-
to-one mapping of source signals to dictionary atoms—a
classification of sorts—characterized by a known non-linear
transformation with unknown parameters. The limitation
of the SVM perspective is that it cannot recover the sig-
nal strength of an atom in the mixture; rather, it can only
recover whether or not a particular atom was present. In
experiments, we show that our model can handle difficult
problems involving classification of sources. Our model
may be particularly useful for speech signal processing and
CDMA-based mobile communication, where in both cases
we have knowledge about the invariances in the signal.

1. INTRODUCTION

Independent component analysis (ICA) [2, 3, 4] attempts
to recover multiplesourcesignals that have been combined
into one or moremixturesignals. Most ICA algorithms as-
sume that the sources are mutually statistically independent
and that mixtures are linear combinations of the sources.
Well known ICA methods like “infomax” [5], maximum
likelihood approaches [6], entropy and cumulant based meth-

ods [7, 8, 9] have the restriction that the number of source
and mixture signals must be equal. In many real world ap-
plications, only one mixture is available. For example, with
direct sequence code division multiple access (DS-CDMA)
mobile communication, signals from multiple users must be
extracted from a single mixture time series. Further, many
real world sound recordings (e.g., bird songs, music, traffic,
or listening devices used in espionage) use only one or two
microphones. Standard ICA approaches cannot be used in
these cases.

In contrast, the human auditory system is able to distin-
guish multiple sound sources from two mixtures—the ears.
It can even extract sources from monaural recordings. In
some cases, separation of signals is easy because the signals
occur in different frequency bands (e.g., bird songs and an
oncoming bus), but many times simple physical distinctions
are inadequate to recover the signals. Consider a perfor-
mance by a symphony orchestra. The conductor is able to
isolate individual melody lines, instruments, or even musi-
cians from the ensemble, whereas a naive audience member
will not. The difference between the conductor and the au-
dience member is the conductor’s knowledge and familiar-
ity with the sound patterns that constitute the performance.
One could even imagine that the conductor has a dictionary
of soundatoms—canonical or prototypical musical phrases
and timbres—and identification of components comes by
isolating the atoms from the mixture.

Several ICA approaches have adopted the idea of us-
ing a dictionary to extract multiple sources from fewer or
even one mixture [1, 10, 11]. The dictionary can be based
on primitive functions (e.g., Fourier bases, wavelet pack-
ages, or Gabor functions) [1], predefined based on prior
knowledge, or can be trained to fit the problem [12, 11].
Zibulevsky and Pearlmutter [1] specify not only a dictio-
nary, but also a prior that enforces sparseness—i.e., an ex-
pectation as to how many sources will be present simul-
taneously. All these approaches are restricted to mixtures
consisting of linearly superimposed dictionary atoms; this
restriction is necessary to avoid ambiguity in the problem.



In this paper we show that thesparse-decomposition
methodof Zibulevsky and Pearlmutter can be reinterpreted
as�-support vector regression (�-SVR) [13], when there is
a single mixture and a Laplacian prior. The�-SVR anal-
ogy provides a novel interpretation of the sparse-decom-
position method’s hyperparameter that determines the de-
gree of sparseness. The analogy also allows one to view
the sparse-decomposition method as one member of a fam-
ily of similar algorithms. Most notably, the family includes
a variant of the sparse-decomposition method that allows
for non-linear transformations of the sources before they are
mixed, and another non-linear transformation in the process
of identifying dictionary atoms in the mixture.

Applications of the approach include speech recogni-
tion, where the dictionary consists of pretrained or typical
speech waveforms [12], and DS-CDMA mobile communi-
cation, where the dictionary consists of spreading sequences
of the users. One benefit of the non-linearities incorpo-
rated into the approach is that—as we will explain in de-
tail later—they can be used to achieve some degree of in-
variance to irrelevant characteristics of the speech signal.
We demonstrate our approach with experiments using noisy
single mixtures and speech tasks.

2. SPARSE-DECOMPOSITION VIEWED AS �-SVR

In this section, we review the sparse-decomposition method
introduced in [1], focusing on the case of a single mixture
signal. We will also describe the relation between sparse
decomposition and�-support vector regression (�-SVR).

2.1. The sparse-decomposition Method

Denote the mixture signal byx 2 RL, which—in the case
of speech—might correspond to a time series ofL discrete
time steps. We assume a dictionary matrix,S 2 RL�P ,
whose columns consist of theP atomic signals of lengthL. We assume a generative process in which the mixture is
created by first choosing a set of dictionary atoms and then
combining them linearly with noise:x = S 
 + � = PXi=1 
iSi + � ; (1)

where
 2 RP is a vector of weighting coefficients, one per
atom,� � N �0; �2� is anL-dimensional i.i.d. additive
Gaussian noise vector, andSi theith atom in the dictionary.
See Figure 1 for an illustration of the generative process that
produces the mixture.

The goal of the sparse-decomposition method is to de-
termine the coefficient vector,̂
, that satisfies two proper-
ties: (1)x must be well approximated bŷ
, and (2)
̂ is
sparse, i.e., it has elements of small magnitude. These two
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Fig. 1. The data generation process. Four atoms from the
dictionaryS are weighted by an absolute factor larger
than zero and added together with noise resulting in the
mixture. The goal is to find the weighting factors or at
least to detect an atom being present in the mixture.

properties are achieved by a Bayesian approach in which (1)
is the likelihoodp (x j 
;S) and (2) is the priorp (
). Thus,
the approach tries to maximize the posteriorp (
 j x;S) / p (x j 
;S) p (
) ;
where we use “/” because we omit the constant normal-
ization factor in the denominator of Bayes rule. Given the
Gaussian noise model, the likelihood isp (x j 
;S) / exp�� 12 �2 (x � S 
)2� :
To enforce sparseness of the coefficients, a Laplacian prior
for 
 is used withk
k1 =PPi=1 j
ij we have:p (
) / exp�� ��2 k
k1� :
Consequently, the posterior isp (
 j x;S) / exp�� 1�2 �12 (x � S 
)2 + � k
k1�� :

The solution,
̂, is obtained by maximum a posteriori
(MAP) search. Taking the log of the posterior, flipping its
sign, and ignoring irrelevant constant terms and factors, we
obtain the minimization problem
̂ = argmin
 12 (x � S 
)2 + � PPi=1 j
ij :
By standard techniques, we can turn this unconstrained op-
timization problem into a constrained optimization problem
in which 
 is split into two vectors,
+ and
�. The MAP
solutionf
̂+; 
̂�g is

argmin
+;
� 12 �
+ � 
��T STS �
+ � 
�� �xTS �
+ � 
�� + � 1T �
+ + 
��
s.t. 0 � 
+i ; 
�i � C ; (2)



whereT is the transposition operator,1 is the vector of ones,
andC is an upper bound that can serve as an additional con-
straint on the solution (which was not part of the original
formulation by Zibulevsky and Pearlmutter). In the solu-
tion, 
̂ = 
̂+ � 
̂�, allowing us to split the positive and
negative elements of
 into two vectors.

We will show thatthis formulation is�-support vector
regression (�-SVR)[13]. We give a brief overview of�-SVR.

2.2. �-Support Vector Regression�-SVR is a supervised approach to regression in which we
are given training data

��zi; yi� ; : : : ; (zp; yP )	, wherezi 2RL andyi is a scalar. The goal is to produce a function,h,
such thath �zi� closely approximatesyi. In the linear for-
mulation of�-SVR,h �zi� = 
w; zi�+ o, wherew 2 RL,o 2 R, andh:; :i denotes the dot product. The�-SVR at-
tempts to obtain a “flat” function by minimizing12kwk2, but
subject to the constraint that the fit is good enough, as quan-
tified by the constraint

��yi � f �zi��� < �+ �i for all i. � is a
measure of how accurate the fit needs to be, or intuitively, a
measure of the noise in the data. Theslack variables�i � 0
allow for the fact that it may not be possible to find anh
that satisfies the� accuracy criterion. However, to ensure
that the deviations are minimal, the optimization attempts
to minimize the magnitude of the slack variables as well,
specifically, the constrained optimization is over the objec-
tive function12kwk2+Ck�k1, whereC determines the trade
off between the flatness of the function and the tolerance of
prediction errors.

It turns out that the�-SVR has an alternative but entirely
equivalent formulation in which each examplei is assigned
a coefficient,
i, andw is defined with these coefficients:w = PPi=1 
i zi. Consequently,h(z) = PPi=1 
i 
zi; z� +o. Thezi for which
i 6= 0 are calledsupport vectors. In this
formulation, learning involves an optimization problem, to
search for thef
̂ig that minimize12 PPi;j=1 
i 
j 
zi; zj� +�PPi=1 j
ij � PPi=1 yi 
i subject to�C � 
i � C.
To eliminate the absolute-value function from the objective
function, a standard technique is used to split the
i into pos-
itive and negative components,
+i and
�i : 
i = 
+i � 
�i .
Rather than viewing the constanto as a free parameter ofh, the degree of freedom provided byo is used to forcePPi=1 
i = 0. One obtains the optimization problem:min
+;
� 12 �
+ � 
��T ZTZ �
+ � 
�� �yT �
+ � 
�� + � 1T �
+ + 
��

s.t. 0 � 
+i ; 
�i � C (3)1T �
+ � 
�� = 0 ;
whereZ is the matrix formed byzi: Zi = zi. If the o
is fixed to zero then the constraint

PPi=1 
i = 0 does not

appear in above optimization formulation.

2.3. The relationship between the sparse-decomposition
method and �-SVR

Consider data for an�-SVR consisting ofP training exam-
ples. For examplei, the inputzi 2 RL is dictionary atomSi, and the target for the example,yi, is the dot product be-
tween the mixturex and dictionary atomSi: yi = xTSi =hx;Sii. If we fix o = 0 in this situation, optimization prob-
lem (2) is identical to optimization problem (3) because in
(3) the constraint1T (
+ � 
�) = 0 is removed.

We can adjusto as well through the full�-SVR. To in-
cludeo into the sparse-decomposition method means that
the correlation coefficientsyi possess a mean�y 6= 0. o is an
approximation for�y and can be determined byô = STi x � STi S
̂ � � for 0 < 
̂+i < Cô = STi x � STi S
̂ + � for 0 < 
̂�i < C :o may be useful ifyi = STi x > o. For example,�y > o may
be observed if mixturex and all dictionary atomsSi possess
the same end sequence of components. The dot product of
this end sequence with itself can be removed from eachyi.

The�-SVR formulation gives an interpretation to the hy-
perparameter� in the sparse-decomposition method. It is a
measure of the noise level in the data, and indirectly affects
the number of̂
i that are significantly non-zero. As depicted
in Figure 2, each example will have a target,yi, that either
lies inside or outside the�-tube. The closer a targetyi is to
zero, the more nearly orthogonal is the mixturex to atomSi, and the less likely atomi is to be present in the mixture.
Thus, the�-tube distinguishes atoms that are likely to be rel-
evant from those likely to be irrelevant. It turns out that any
examplei lying outside the�-tubewill have either
̂i = C
or 
̂i = �C. In the sparse-decomposition formulation,
i
indicates the degree to which a dictionary atomi is present.

3. NON-LINEAR FORMULATION

In the �-SVR framework also a non-linear approximation
for y is possible by introducing a non-linear kernelk(a;b),
wherea;b 2 RL. The dot products


zi; zj� in the �-
SVR are replaced byk(zi; zj), or in matrix notationZTZ
is replaced by the kernel matrixK with Kij = k(zi; zj).
The interpretation of this kernel is that theP vectorszi
are mapped by a function� into a feature space. The ker-
nel is the scalar product in the feature space:k(a;b) =h�(a); �(b)i.

We introduce two generalizations of the linear sparse-
decomposition method to a non-linear approach. In both
cases the dictionary atomsSi are mapped into a feature
space, i.e., we use a non-linear kernel.
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Fig. 2. The linear�–support vector regression cor-
responding to the sparse-decomposition method.
Each “x” in the figure corresponds to a single
training example in the�-SVR model. The hori-
zontal axis is a one-dimensional depiction of the
input space, and the vertical axis is the target out-
put. The grey area, the�-tube, specifies the range
of target outputs that are not significantly differ-
ent from zero. The examplesi that lie outside the�-tube will havej
̂ij = C.

3.1. Non-linear approximation of the linear correlationsSTS is substituted by kernel matrixK (Kij = k(Si;Sj)).
Because of equation (1) we can recover the MAP coeffi-
cients
̂ from the non-linear MAP coefficientŝ�:
̂ � �STS��1K �̂ � �STS��1 STd ;
where the “�”-sign indicates an approximation because�
and the noise vector� are present.�̂i = C or �̂i = �C
indicates the presence of dictionary atomi in the mixture
(see Figure 3).
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Fig. 3. The non-linear�-SVR. The dictionary
atomsSi are mapped by� into a feature space.

3.2. Transformed Atomic Sources

Each dictionary atomSi is transformed by a mappingfi
(fromRL into RL) before it gets superimposed with other
transformed atoms to generate the mixture (see Figure 4).
Equation (1) becomesx = PXj=1 �i fi (Si) + � :

transform
nonlinear

transform
nonlinear

transform
nonlinear

transform
nonlinear
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Fig. 4. The data generation process with atom transfor-
mations. In contrast to the sparse-decomposition method
(see Figure 1) the atomic sources are transformed before
they get superimposed.

Let f(S) be the transformed dictionary, that is the matrix
with vector components[f(S)℄i = fi (Si). We minimize���fi (Si)T x � fi (Si)T f (S) ����� :
We assume that we know thefis except for a parameterki:fi(a) = g(a; ki). This means allfi stem from one class of
functions. Further must be assumed that functions from this
class do not change certain features of the original atoms.
The transformation is invariant with respect to a special fea-
ture.� generates this feature and we get� (fi (Si)) = � (Si) :

Our goal is to approximate the mixture feature� (x) lin-
early by the atom features� (Si) in the feature space. Thus,
the mixture feature is assumed to be the weighted sum of
the atom features for atoms that are present in the mixture.
That can be formulated as� (x) = PXi=1 �i� (fi (Si)) = PXi=1 �i� (Si) :
The most notable fact is that the unknown transformationsfi are removed from our approximation problem.�̂i indi-
cates whether mixturex and atomSi share the same fea-
tures or not: largê�i implies thatx andSi are mapped to
similar (correlated) feature vectors.

4. EXPERIMENTS

4.1. Non-linear approximation of the linear correlations

We use a dictionary consisting of 64 atoms of length 128.
The atoms vary in their frequencies and their shape (e.g.
sinuidal, triangular, rectangular, and asymmetric triangu-
lar). On average we choose 4.5 dictionary atoms being present
in one mixture. The nonzero coefficients
i are randomly
chosen from[0:1; 1:0℄ [ [�1:0;�0:1℄. We (1) added Gaus-
sian noise with variance1:0 to each mixture component, (2)



added noise frequencies to the whole mixture (sinuidal with
amplitude form[0; 0:2℄), and (3) made phase shifts for each
atom (randomly 0-20 % of the period). The values for hy-
perparameters� andC are chosen through a validation set.
They are adjusted so that the average number of sources
which are not recognized is below 0.5. In doing so, we
upper bounded the error which results from not detecting
present sources. To evaluate the performance, we count the
number of sources which were wrongly detected.

The linear sparse-decomposition method leads to an er-
ror of 35.32. Table 1 shows the result for the non-linear ker-
nel k(a;b) = (k + a � b)p with different values fork andp. The non-linear kernel leads better results than the lin-
ear sparse-decomposition method. This demonstrates that
non-linear kernels work even for linear problems.p n k 104 105 106 107

2 35.14 35.21 35.23 35.23
5 35.22 35.20 35.23 35.23
10 35.30 35.20 35.22 35.23
20 35.25 35.14 35.21 35.23
30 35.40 35.19 35.21 35.23

Table 1. Average (over 100 trials) of wrongly detected
atoms for kernelsk(a;b) = (k + a � b)p (the linear result
was 35.32).

4.2. Transformed Atomic Sources

4.2.1. Artificial Data

We consider the following class of componentwise transfor-
mations:[fi(a)℄j = jaj jwi . They produce components� 0.
As invariant we consider the local variance which remains
the same even if negative values are transformed into posi-
tive values. To compute the local variance we use(2li + 1)�1 Pj+lit=j�li (at � �aj)2, where�aj := (2li + 1)�1 Pj+lit=j�li at. We used 3 different values
for li: l1 = 8 (AV1), l2 = 10 (AV2), l3 = 20 (AV3).

We generated 100 dictionary atoms of length 1024. To
produce an atom we segmented the 1024 length vector into
random segments of length between 1 and 64. Each seg-
ment consists of a scaled (from[�0:8;�0:2℄ [ [0:2; 0:8℄)
periodic function from previous experiment. To each seg-
ment component a constant between[�a
;+a
℄ is added.
Figure 4 depicts the data generation process.

Task 1 usesjaj j and task 2 usesa2j , and task 3 usesjaj jw
with w randomly from[0:5; 2:0℄ as transformation. We seta
 = 5:0 for task 1 anda
 = 0:5 for task 2 and 3. The trans-
formations are mixed as in previous experiment and Gaus-
sian noise has� = 0:01. As in previous experiment we
keep average not detected sources below a certain bound:

0.4. The results are shown in Table 2. The non-linear map-
ping by the local variance formulas was able to extract the
invariant and, therefore, to classify an atom as being present
or not.

linear AV1 AV2 AV3
Task 1:a2i failed 0.63 0.72 0.99
Task 2:jaij failed 5.41 7.38 failed

Task 3:jaijw failed 0.55 0.84 2.37

Table 2. Average (over 100 mixtures) number of wrongly
detected atoms for the linear sparse-decomposition method
(“linear”) and three different methods measuring the local
variance (“AV1”-“AV3”).

4.2.2. Speech Data

We considered transformations which shift the dictionary
atoms, where each atom is shifted differently. As an invari-
ant we use the power spectrum. The dictionary entries are
5 spoken words (“hid”, “head”, “had”, “hud”, and “hod”)
spoken by 20 different speakers (dictionary size is 100). The
data was obtained fromareas/speech/database/hvd/
in the AI-Repository atcs.cmu.edu. The speech is sam-
pled at 10kHz.

We did not restrict the shifts of the atoms. The coeffi-
cients
i are chosen from[0:2; 0:8℄. The power spectrum is
obtained by using fast Fourier transformation with shifting
Hanning window of size 256. The first 20 low frequencies
were set to zero. The additive Gaussian noise had standard
deviation of� = 0:05 for task 1 (T1) and� = 0:2 for task
2 (T2).

We compared three methods: PS1 is the power spec-
trum of the original mixture, PS2 is the power spectrum of
the mixture where absolute mixture values smaller than 0.05
are set to zero, and PS3 is the power spectrum of the mix-
ture where absolute mixture values smaller that 0.1 are set
to zero. As in previous experiments we keep the average
number of not detected atoms below a certain bound: 0.64
for T1 and 0.74 for T2.

The linear approach completely failed to solve the task.
The results for the nonlinear transformation (power spec-
trum) are given in Table 3. Figure 5 shows a atomic source
detection example for PS3.

5. CONCLUSION

In this paper we reinterpreted the sparse-decomposition me-
thod for a single mixture as�-support vector regression (�-
SVR). The�-SVR analogy supplied a new view on the sparse-
decomposition method’s hyperparameter and allowed to in-
troduce family of similar algorithms of which the sparse-de-



linear PS1 PS2 PS3
Task 1 failed 1.82 1.72 1.50
Task 2 failed 5.06 4.82 5.10

Table 3. Average number of wrongly detected atoms for the
linear sparse-decomposition method (“linear”), and three
non-linear transformation into the power spectrum (“PS1”
to “PS3”). The error values are an average of 100 mixtures.
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Fig. 5. Example for the method PS3. It detected 6 dictionary
atoms in mixture: three were correctly and three wrongly de-
tected. First line: three dictionary entries which are present
(but shifted) in the mixture. Second line: (left) the mixture
without noise and (right) the mixture. Third line: wrongly de-
tected dictionary entries out of 100.

composition method is one member. This family includes
methods that allow for non-linear transformations of the
sources before they get mixed, and another non-linear trans-
formation in the process of identifying dictionary atoms in
the mixture. One benefit of the non-linearities incorporated
into the approach is that they can be used to achieve some
degree of invariance to irrelevant characteristics of signals.
We demonstrated our approach with experiments using noisy
single mixtures and speech datasets.
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