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ABSTRACT

We train autoencoders by Flat Minimum Search (FMS),
a regularizer algorithm for finding low-complexity networks
describable by few bits of information. As a by-product,
this encourages nonlinear independent component analysis
(ICA) and sparse codes of the input data.

Flat minima are regions in weight space where (a) there
is tolerable small error and (b) you can perturb the weights
without greatly affecting the network’s output. Hence the
weights may be given with low precision: few bits of infor-
mation are required to describe the corresponding “simple”
or low complexity-network. Low network complexity is
generally associated with high generalization performance.

To simplify the algorithm for finding flat minima, we
do not consider maximal connected regions but focus on
so-called “boxes” within regions: for each weight vectorw
leading to tolerable small error, its boxMw in weight space
is aW -dimensional hypercuboid with centerw, whereW is
the number of weights. For simplicity, each edge of the box
is taken to be parallel to one weight axis. Half the length of
the box edge in direction of the axis corresponding to weightwij is denoted by�wij , which gives the precision ofwij .Mw’s box volume is defined byV (�w) := 2W Qi;j �wij ,
where�w denotes the vector with components�wij . Our
goal is to find large boxes within flat minima. Towards this
end we try to find minimalB := � log � 12W V (�w)� =Pi;j � log �wij . Note the relationship to MDL:B is the
number of bits (save a constant) required to describe all
weights in the net.

FMS [1] minimizesE = Eq + �B by gradient descent,
whereEq is the training set mean squared error, and� > 0
scales the influence ofB = T1 + T2, whereT1 := Xi;j2O�H[H�I logXk2O� @yk@wij �2
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T2 :=W logXk2O0BB@ Xi;j2O�H[H�I ��� @yk@wij ���rPk2O � @yk@wij �21CCA2 ;
whereO;H; I denote index sets for output, hidden, input
units, respectively.yk denotes the activation of an output
unit, which depends on the weightswij .B is derived from two flatness conditions, FC1 and FC2.
Perturbing the weightsw by �w, we obtainED (w; �w) :=Pk2O �yk (w + �w)� yk (w)�2. To enforce flatness, FC1
wants to keep ED low:ED (w; �w) �Xk2O0@Xi;j @yk@wij �wij1A2 �Xk2O0@Xi;j ���� @yk@wij ���� j�wij j1A2 � � ,

where� > 0 is small enough to allow for linear approxima-
tion.

Many boxesMw define a flat region and satisfy FC 1. To
select a particular, very flatMw, the following FC2 uses up
degrees of freedom left by FC1 — it enforces minimal net
output variance within a box given a constant box volume:8i; j; u; v :(�wij)2 Xk2O� @yk@wij�2 = (�wuv)2 Xk2O� @yk@wuv�2 :
Inserting FC2 into FC1 (using “=” instead of “�”, since we
search for maximal�wij ), we obtain:



j�wuv j = p�rPk � @ok@wuv�2vuuuuutPk0BB@Pi;j ��� @ok@wij ���rPk� @ok@wij �21CCA2
Inserting the previous equation into the definition ofB

we obtain above formula forB, where the constant factor12
and the termlog � are skipped, since during gradient descent
constant terms vanish and constant factors are absorbed by
the learning factor.

A component function (CF) is the function determining
the activation of a code component (hidden unit) in response
to a given input. Consider the rewritten first term ofB:T1 = Xi;j2O�H[H�I �2 log f 0i (si) + 2 log yj +logXk2O�@yk@yi �2! =2 Xi2O[H fan-in(i) log f 0i (si) +2 Xj2H[I fan-out(j) log yj +Xi2O[H fan-in(i) logXk2O�@yk@yi �2 ;
wheref 0i (si) is the derivative of the activation function of
unit i with activationyi and fan-in(i) (fan-out(i)) denotes
the number of incoming (outgoing) weights of uniti.T1 makes (1) unit activations decrease to zero, (2) first-
order derivatives of activation functions decrease to zero,
and (3) the influence of units on the output decreases to zero.T1 is the reason why low-complexity (or simple) CFs are
preferred. Point (1) above favors sparse hidden unit activa-
tions (here: few active code components); point (2) favors
non-informative hidden unit activations hardly affected by
small input changes. Point (3) favors sparse hidden unit ac-
tivations in the sense that “few hidden units contribute to
producing the output”.T2 punishes units with similar influence on the output.
We reformulate it:T2 = W log jOj jO �H j2 + jI j2 Xk2OXi2H Xu2H���@yk@yi ��� ��� @yk@yu ���rPk2O �@yk@yi �2 rPk2O � @yk@yu�21CCA ;

wherej:j denotes the number of elements in a set.
We observe: (1) an output unit that is very sensitive with

respect to two given hidden units will heavily contribute toT2. (2) This large contribution can be reduced by making
both hidden units have large impact on other output units.

So FMS essentially tries to figure out a way of using
(1) as few CFs as possible for each output unit (this leads to
separation of CFs), while simultaneously (2) using the same
CFs for as many output units as possible (common CFs).

The results above give rise to a new method for source
separation: simply train autoencoders (e.g., [2, 3, 4, 5]) via
FMS. The method’s name is LOCOCODE [6, 7, 8, 9, 10],
which stands for “Low-complexity coding anddecoding.”
LOCOCODEgenerateslococodesthat (1) convey informa-
tion about the input data, (2) can be computed by a low-
complexity mapping (LCM), (3) can be decoded by a LCM
(for alternative approaches using low-complexity nets to achieve
ICA see [11, 12].).

The analysis above shows that LOCOCODEessentially
attempts at describing single inputs with as few and as sim-
ple features as possible. This reflects a basic assumption,
namely, that the true input “causes” are indeed few and sim-
ple. Training sets whose elements are all describable by few
features will result insparsecodes. Sparseness [13, 14, 15,
16, 17, 18, 19] is not viewed as ana priori good thing, and
is not enforced explicitly, but only if the input data indeed
is naturally describable by a sparse code.

LOCOCODE(a) is not (like PCA and ICA [20, 21, 22,
23, 24, 25, 26, 27]) inherently limited to the linear case [10],
(b) does not need (like ICA)a priori information about the
number of independent data sources (even when ICA knows
the number of sources, LOCOCODEoutperforms ICA) [8],
and (c) has a higher coding efficiency (bits per input pixel)
than PCA and ICA [9]. Unlike codes obtained with stan-
dard autoencoders, lococodes are based on feature detec-
tors, never unstructured, usually sparse, sometimes facto-
rial or local (depending on statistical properties of the data).
Although LOCOCODEis not explicitly designed to enforce
sparse or factorial codes, it extracts optimal codes for non-
linear, difficult versions of the “bars” benchmark problem,
whereas ICA and PCA do not [10, 8]. It produces familiar,
biologically plausible feature detectors when applied to real
world images, and codes with fewer bits per pixel than ICA
and PCA. Unlike ICA it does not need to know the num-
ber of independent sources. As a preprocessor for a vowel
recognition benchmark problem it sets the stage for excel-
lent classification performance [10].

Although LOCOCODE works well for visual inputs, it
may be less useful for discovering input causes that can only
be represented by high-complexity input transformations,
or for discovering many features (causes) collectively de-
termining single input components (as, e.g., in acoustic sig-
nal separation, where ICA does not suffer from the fact that



each source influences each input component and none is
computable by a low-complexity function). For even more
general, algorithmic methods reducing net complexity see
[28]. For the authors’ alternative neural approaches to non-
linear ICA see [29, 30].

Our results reveil an interesting, previously ignored con-
nection between two important fields: regularization, and
ICA. They may represent a first step towards unification of
regularization and unsupervised learning.
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