
Feature extraction through LOCOCODENeural Computation 11(3):679{714, 1999Sepp HochreiterFakult�at f�ur InformatikTechnische Universit�at M�unchen80290 M�unchen, Germanyhochreit@informatik.tu-muenchen.dehttp://www7.informatik.tu-muenchen.de/~hochreit J�urgen SchmidhuberIDSIACorso Elvezia 366900 Lugano, Switzerlandjuergen@idsia.chhttp://www.idsia.ch/~juergenAbstract\Low-complexity coding and decoding" (Lococode) is a novel approach to sensory codingand unsupervised learning. Unlike previous methods it explicitly takes into account theinformation-theoretic complexity of the code generator: it computes lococodes that (1) conveyinformation about the input data and (2) can be computed and decoded by low-complexitymappings. We implement Lococode by training autoassociators with Flat Minimum Search,a recent, general method for discovering low-complexity neural nets. It turns out that thisapproach can unmix an unknown number of independent data sources by extracting a minimalnumber of low-complexity features necessary for representing the data. Experiments show:unlike codes obtained with standard autoencoders, lococodes are based on feature detectors,never unstructured, usually sparse, sometimes factorial or local (depending on statisticalproperties of the data). Although Lococode is not explicitly designed to enforce sparseor factorial codes, it extracts optimal codes for di�cult versions of the \bars" benchmarkproblem, whereas ICA and PCA do not. It produces familiar, biologically plausible featuredetectors when applied to real world images, and codes with fewer bits per pixel than ICAand PCA. Unlike ICA it does not need to know the number of independent sources. Asa preprocessor for a vowel recognition benchmark problem it sets the stage for excellentclassi�cation performance. Our results reveil an interesting, previously ignored connectionbetween two important �elds: regularizer research, and ICA-related research. They mayrepresent a �rst step towards uni�cation of regularization and unsupervised learning.1 INTRODUCTIONWhat is the goal of sensory coding? There is no generally agreed-upon answer to Field's (1994)question yet. Several information-theoretic objective functions (OFs) have been proposed to eval-uate the quality of sensory codes. Most OFs focus on statistical properties of the code components(such as mutual information) | we refer to them as code component-oriented OFs, or COCOFs.Some COCOFs explicitly favor near-factorial, minimally redundant codes of the input data (see,e.g., Watanabe 1985, Barlow et al. 1989, Linsker 1988, Schmidhuber 1992, Schmidhuber andPrelinger 1993, Schraudolph and Sejnowski 1993, Redlich 1993, Deco and Parra 1994). Such codescan be advantageous for (1) data compression, (2) speeding up subsequent gradient descent learn-ing (e.g., Becker 1991), (3) simplifying subsequent Bayes classi�ers (e.g., Schmidhuber et al. 1996).Other approaches favor local codes, e.g., Rumelhart and Zipser (1986), Barrow (1987), Kohonen(1988). They can help to achieve (1) minimal crosstalk, (2) subsequent gradient descent speed-ups, (3) facilitation of post training analysis, (4) simultaneous representation of di�erent dataitems. Recently there also has been much work on COCOFs encouraging biologically plausiblesparse distributed codes, e.g., Field (1987), Barlow (1983), Mozer (1991), F�oldi�ak (1990), F�oldi�akand Young (1995), Palm (1992), Zemel and Hinton (1994), Field (1994), Saund (1994), Dayan1



and Zemel (1995), Li (1995), Olshausen and Field (1996), Zemel (1993), Hinton and Ghahramani(1997). Sparse codes share certain advantages of both local and dense codes.But what about coding costs? COCOFs express desirable properties of the code itself,while neglecting the costs of constructing the code from the data. For instance, coding input datawithout redundancy may be very expensive in terms of information bits required to describe thecode-generating network, which may need many �nely tuned free parameters. In fact, the mostcompact code of the possible environmental inputs would be the \true" probabilistic causal modelcorresponding to our universe's most basic physical laws. Generating this code and using it fordealing with everyday events, however, would be extremely ine�cient.A previous argument for ignoring coding costs (e.g., Zemel 1993, Zemel and Hinton 1994, Hin-ton and Zemel 1994), based on the principle of minimumdescription length (MDL, e.g., Solomono�1964, Wallace and Boulton 1968, Rissanen 1978), focuses on hypothetical costs of transmittingthe data from some sender to a receiver | how many bits are necessary to enable the receiver toreconstruct the data? It goes more or less like this: \Total transmission cost is the number of bitsrequired to describe (1) the data's code, (2) the reconstruction error and (3) the decoding procedure.Since all input exemplars are encoded/decoded by the same mapping, the coding/decoding costs arenegligible because they occur only once."We doubt, however, that sensory coding's sole objective should be to transform data into acompact code that is cheaply transmittable across some ideal, abstract channel. We believe thatone of sensory coding's objectives should be to reduce the cost of code generation through datatransformations in existing channels (e.g., synapses etc.)1. Without denying the usefulness ofcertain COCOFs, we postulate that an important scarce resource is the bits required to describethe mappings that generate and process the codes | after all, it is these mappings that need tobe implemented, given some limited hardware.Lococodes. For such reasons we shift the point of view and focus on the information-theoreticcosts of code-generation (compare Pajunen (1998) for recent related work). We will present a novelapproach to unsupervised learning called \low-complexity coding and decoding" (Lococode |see also Hochreiter and Schmidhuber 1997b, 1997c, 1998). Without assuming particular goalssuch as data compression, simplifying subsequent classi�cation, etc., but in the MDL spirit, Lo-cocode generates so-called lococodes that (1) convey information about the input data, (2) can becomputed from the data by a low-complexity mapping (LCM), (3) can be decoded by a LCM. Byminimizing coding/decoding costs Lococode will yield e�cient, robust, noise-tolerant mappingsfor processing inputs and codes.Lococodes through FMS. To implement Lococode we apply Flat Minimum Search (FMS,Hochreiter and Schmidhuber 1997a) to an autoassociator (AA) whose hidden layer activationsrepresent the code. FMS is a general, gradient-based method for �nding networks that can bedescribed with few bits of information.Coding each input via few simple component functions (CFs). A CF is the functiondetermining the activation of a code component in response to a given input. The analysis inSection 3 will show that FMS-based Lococode tries to reproduce the current input by using asfew code components as possible, each computed by a separate low-complexityCF (implementable,e.g., by a subnetwork with few low-precision weights).This re
ects a basic assumption, namely, that the true input \causes" (e.g., Hinton et al.1995, Dayan and Zemel 1995, Ghahramani 1995) are indeed few and simple. Training sets whoseelements are all describable by few features will result in sparse codes, where sparseness does notnecessarily mean that there are \few active code components" but that \few code componentscontribute to reproducing the input". This can make a di�erence in the nonlinear case, wherethe absence of a particular HU activation may imply presence of a particular feature, and wheresparseness may mean that for each input only few HUs are simultaneously non-active: our gen-eralized view of sparse codes allows for noninformative activation values other than zero. (ButLococode does prune code components that are always inactive or always active.)We will see that Lococode encourages noise-tolerant feature detectors reminiscent of those1Note that the mammalian visual cortex rarely just transmits data without also transforming it.2



observed in the mammalian visual cortex. Inputs that are mixtures of a few regular features, suchas edges in images, can be described well in a sparse fashion (only code components correspondingto present features contribute to coding the input). In contrast to previous approaches, however,sparseness is not viewed as an a priori good thing, and is not enforced explicitly, but only ifthe input data indeed is naturally describable by a sparse code. Some lococodes are not onlysparse but also factorial, depending on whether the input is decomposable into factorial features.Likewise lococodes may deviate from sparseness towards locality if each input exhibits a singlecharacteristic feature. Then the code will not be factorial (because knowledge of the componentrepresenting the characteristic feature implies knowledge of all others), but it will still be naturalbecause it represents the true cause in a fashion that makes reconstruction (and other types offurther processing) simple.Outline. An FMS-review will follow in Section 2. Section 3 will analyze the bene�cial e�ectsof FMS' error terms in the context of autoencoding. The remainder of our paper will be devotedto empirical justi�cations of Lococode. Experiments in Section 4.2 will show that all three\good" kinds of code discussed in previous work (namely local, sparse, factorial) can be naturallococodes. In Section 4.3 Lococode will extract optimal sparse codes re
ecting the independentfeatures of random horizontal and vertical (noisy) bars, while ICA and PCA won't. In Section 4.4Lococode will generate plausible sparse codes (based on well-known on-center-o�-surround andother appropriate feature detectors) of real world images. Section 4.5 will �nally use Lococodeas a preprocessor for a standard, over�tting back-propagation (BP) speech data classi�er. Sur-prisingly, this combination achieves excellent generalization performance. We conclude that thespeech data's lococode already conveys the \essential", noise-free information, already in a formuseful for further processing and classi�cation. Section 5 will discuss our �ndings.2 FLAT MINIMUM SEARCH: REVIEWFMS Overview. FMS is a general method for �nding low complexity-networks with high gen-eralization capability. FMS �nds a large region in weight space such that each weight vector fromthat region has similar small error. Such regions are called \
at minima". In MDL terminology,few bits of information are required to pick a weight vector in a \
at" minimum (corresponding toa low complexity-network) | the weights may be given with low precision. In contrast, weightsin a \sharp" minimum require a high-precision speci�cation. As a natural by-product of net com-plexity reduction, FMS automatically prunes weights and units, and reduces output sensitivitywith respect to remaining weights and units. Previous FMS applications focused on supervisedlearning (Hochreiter and Schmidhuber 1995, 1997a): FMS led to better stock market predictionresults than \weight decay" and \optimal brain surgeon" (Hassibi and Stork 1993). In this paper,however, we will use it for unsupervised coding only.Architecture. We use a 3-layer feedforward net. Each layer is fully connected to the next.Let O;H; I denote index sets for output, hidden, input units, respectively. Let j:j denote thenumber of elements in a set. For l 2 O [ H, the activation yl of unit l is yl = fl (sl), wheresl = Pmwlmym is the net input of unit l (m 2 H for l 2 O and m 2 I for l 2 H), wlm denotesthe weight on the connection from unit m to unit l, fl denotes unit l's activation function, andfor m 2 I, ym denotes the m-th component of an input vector. W = j(O �H) [ (H � I)j is thenumber of weights.Algorithm. FMS' objective function E features an unconventional error term:B = Xi;j2O�H[H�I logXk2O� @yk@wij�2 +W logXk2O0BB@ Xi;j2O�H[H�I ��� @yk@wij ���rPk2O � @yk@wij �21CCA2 .E = Eq + �B is minimized by gradient descent, where Eq is the training set mean squared error(MSE), and � a positive \regularizer constant" scaling B's in
uence. De�ning � corresponds to3



choosing a tolerable error level (there is no a priori \optimal" way of doing so). B measuresthe weight precision (number of bits needed to describe all weights in the net). Reducing Bwithout increasing Eq means removing weight precision without increasing MSE. Given a constantnumber of output units, all of this can be done e�ciently, namely, with standard BP's order ofcomputational complexity. For details see Hochreiter and Schmidhuber's article (1997a) or theirhome pages. For even more general, algorithmicmethods reducing net complexity see Schmidhuber(1997a).3 EFFECTS OF THE ADDITIONAL TERM BWhere does B come from? To discover 
at minima FMS searches for large axis-alignedhypercuboids (boxes) in weight space such that weight vectors within the box yield similar networkbehavior. Boxes satisfy two 
atness conditions, FC1 and FC2. FC1 enforces \tolerable" outputvariation in response to weight vector perturbations, i.e., near-
atness of the error surface aroundthe current weight vector (in all weight space directions). Among the boxes satisfying FC1, FC2selects a unique one with minimal net output variance. B is the negative logarithm of this box'svolume (ignoring constant terms that have no e�ect on the gradient descent algorithm). Hence Bis the number of bits (save a constant) required to describe the current net function, which doesnot change signi�cantly by changing weights within the box. The box edge length determines therequired weight precision. See Hochreiter and Schmidhuber (1997a) for details of B's derivation.3.1 First term of B favors sparseness and simple CFs.Simple component functions (CFs). The termT1 := Xi;j2O�H[H�I logXk2O� @yk@wij�2reduces output sensitivity with respect to weights (and, therefore, units). T1 is responsible forpruning weights (and, therefore, units). The chain rule allows for rewriting@yk@wij = @yk@yi @yi@wij = @yk@yi f 0i(si) yj ;where f 0i(si) is the derivative of the activation function of unit i with activation yi. If unit j'sactivation yj decreases towards zero then for all i the @yk@wij will decrease. If the �rst order derivativef 0i(si) of unit i decreases towards zero then for all j @yk@wij will decrease. Note that f 0i (si) and yjare independent of k and can be placed outside of the sumPk2O in T1. We obtain:T1 = Xi;j2O�H[H�I 2 logf 0i (si) + 2 log yj + logXk2O�@yk@yi �2! =2 Xi2O[H fan-in(i) log f 0i(si) + 2 Xj2H[I fan-out(j) log yj +Xi2O[H fan-in(i) logXk2O�@yk@yi �2 ;where fan-in(i) (fan-out(i)) denotes the number of incoming (outgoing) weights of unit i.T1 makes (1) unit activations decrease to zero in proportion to their fan-outs, (2) �rst-orderderivatives of activation functions decrease to zero in proportion to their fan-ins, and (3) thein
uence of units on the output decrease to zero in proportion to the unit's fan-in. For a detailed4



analysis see Hochreiter and Schmidhuber (1997a). T1 is the reason why low-complexity (or simple)CFs are preferred.Sparseness. Point (1) above favors sparse hidden unit activations (here: few active compo-nents); point (2) favors non-informative hidden unit activations hardly a�ected by small inputchanges. Point (3) favors sparse hidden unit activations in the sense that \few hidden units con-tribute to producing the output". In particular, sigmoid hidden units with activation function11+exp(�x) favor near-zero activations.3.2 Second term favors few, separated, common component functions.The term T2 := W logXk2O0BB@ Xi;j2O�H[H�I ��� @yk@wij ���rPk2O � @yk@wij �21CCA2 ,punishes units with similar in
uence on the output. We reformulate it:T2 = W log0BB@ Xi;j2O�H[H�I Xu;v2O�H[H�I Pk2O ��� @yk@wij ��� ��� @yk@wuv ���rPk2O � @yk@wij �2 rPk2O � @yk@wuv�21CCA .Using @yk@wij = @yk@yi @yi@wij ;this can be rewritten asT2 = W log0BB@ Xi;j2O�H[H�I Xu;v2O�H[H�I Pk2O ���@yk@yi ��� ���@yk@yu ���rPk2O �@yk@yi �2 rPk2O �@yk@yu�21CCA .For i 2 O ���@yk@yi ���rPk2O �@yk@yi �2 = 1holds. We obtainT2 = W log0BB@jOj jO �Hj2 + jIj2Xk2OXi2H Xu2H ���@yk@yi ��� ��� @yk@yu ���rPk2O �@yk@yi �2 rPk2O �@yk@yu�21CCA .We observe: (1) an output unit that is very sensitive with respect to two given hidden units willheavily contribute to T2 (compare the numerator in the last term in the brackets of T2). (2) Thislarge contribution can be reduced by making both hidden units have large impact on other outputunits (see denominator in the last term in the brackets of T2).Choice of component functions (CFs). FMS tries to �gure out a way of using (1) as fewCFs as possible for each output unit (this leads to separation of CFs), while simultaneously (2)using the same CFs for as many output units as possible (common CFs).5



SPECIAL CASE: LINEAR OUTPUT ACTIVATION.Since our targets will usually be in the linear range of a sigmoid output activation function, let usconsider the linear case in more detail. Suppose all output units k use the same linear activationfunction fk (x) = Cx (where C is a real-valued constant). Then @yk@yi = Cwki for hidden unit i.We obtain T2 = W log jOj jO �Hj2 + jIj2Xi2H Xu2H Pk2O jwkij jwkujkWik kWuk ! ,where Wi denotes the outgoing weight vector of unit i with [Wi]k := wki, k:k the Euclidean vectornorm kxk =pPi x2i , and [:]k the kth component of a vector.Few component functions preferred. We observe that hidden units whose outgoing weightvectors have near-zero weights yield small contributions to T2, that is, the number of CFs will getminimized.Common component functions preferred. Outgoing weight vectors of hidden units areencouraged to have a large e�ect on the output (see denominator in the last term in the bracketsof T2). This implies preference of CFs that can be used for generating many or all outputcomponents.CF separation | few relevant CFs per output unit. On the other hand, two hiddenunits whose outgoing weight vectors do not solely consist of near-zero weights are encouraged toin
uence the output in di�erent ways by not representing the same input feature (see numeratorin the last term in the brackets of T2). In fact, FMS punishes not only outgoing weight vectorswith same or opposite directions but also vectors obtained by 
ipping the signs of the weights(multiple re
ections from hyperplanes trough the origin and orthogonal to one axis). Hence twounits performing redundant tasks, such as both activating some output unit, or one activating itand the other de-activating it, will cause large contributions to T2. This encourages separation ofCFs and use of few CFs per output unit.3.3 Low-Complexity AutoassociatorsGiven some data set, FMS can be used to �nd a low-complexity autoassociator (AA) whose hiddenlayer activations code the individual training exemplars. The AA can be split into two modules:one for coding, one for decoding.Previous autoassociators (AAs). Backprop-trained AAs without a narrow hidden bot-tleneck (\bottleneck" refers to a hidden layer containing fewer units than other layers) typicallyproduce redundant, continuous-valued codes and unstructured weight patterns. Baldi and Hornik(1989) studied linear AAs with a hidden layer bottleneck and found that their codes are orthogonalprojections onto the subspace spanned by the �rst principal eigenvectors of a covariance matrixassociated with the training patterns. They showed that the mean squared error (MSE) surfacehas an unique minimum. Nonlinear codes have been obtained by nonlinear bottleneck AAs withmore than 3 (e.g., 5) layers, e.g., Kramer (1991), Oja (1991) or DeMers and Cottrell (1993). Noneof these methods produces sparse, factorial or local codes | instead they produce �rst principalcomponents or their nonlinear equivalents (\principal manifolds"). We will see that FMS-basedAAs yield quite di�erent results.FMS-based AAs. According to subsections 3.1 and 3.2, because of the low-complexitycoding aspect the codes tend to (C1) be binary for sigmoid units with activation function fi(x) =11+exp(�x) (f 0i (si) is small for yi near 0 or 1), (C2) require few separated code components orhidden units (HUs), and (C3) use simple component functions. Because of the low-complexitydecoding part, codes also tend to (D1) have many HUs near zero and, therefore, be sparsely (oreven locally) distributed, (D2) have code components conveying information useful for generatingas many output activations as possible. (C1), (C2) and (D2) encourage minimally redundant,binary codes. (C3), (D1) and (D2), however, encourage sparse distributed (local) codes. (C1){ (C3) and (D1) { (D2) lead to codes with simply computable code components (C1, C3) that6



convey a lot of information (D2), and with as few active code components as possible (C2, D1).Collectively this makes code components represent simple input features.4 EXPERIMENTSOutline. Section 4.1 provides an overview of the experimental conditions. Section 4.2 uses simplearti�cial tasks to show how various lococode types (factorial, local, sparse, feature detector-based)depend on input/output properties. The visual coding experiments are divided into two sections:Section 4.3 deals with arti�cial bars, Section 4.4 with real world images. In Section 4.3 the\true" causes of the input data are known, and we show that Lococode learns to representthem optimally (PCA and ICA do not). In Section 4.4 it generates plausible feature detectors.Finally, in Section 4.5 Lococode is used as a preprocessor for speech data fed into standardbackpropagation classi�er. This provokes signi�cant performance improvement.4.1 Experimental ConditionsIn all our experiments we associate input data with itself, using an FMS-trained 3-layer autoassoci-ator (AA). Unless stated otherwise we use 700,000 training exemplars, sigmoid hidden units (HUs)with activation function (AF) 11+exp(�x) , sigmoid output units with AF 21+exp(�x) � 1, noninputunits with an additional bias input, normal weights initialized in [�0:1; 0:1], bias hidden weightswith -1.0, � with 0.5. The HU AFs do make sparseness better recognizable, but the output AFs arefairly arbitrary | linear AFs or those of the HUs will do as well. Targets are scaled to [�0:7; 0:7],except for Task 2.2. Target scaling (1) prevents tiny �rst order derivatives of output units (whichmay cause 
oating point over
ows), and (2) allows for proving that the FMS algorithm makesthe Hessian entries of output units @2yk@wij@wuv decrease where the weight precisions j�wijj or j�wuvjincrease (Hochreiter and Schmidhuber 1997a).Parameters and other details.� learning rate: conventional learning rate for error term E (just like backprop's).� �: a positive \regularizer" (hyperparameter) scaling B's in
uence. � is computed heuristi-cally as described by Hochreiter and Schmidhuber (1997a).� ��: a value used for updating � during learning. It represents the absolute change of � aftereach epoch.� Etol: the tolerable mean squared error (MSE) on the training set. It is used for dynamicallycomputing �, and for deciding when to switch phases in 2-phase learning.� 2-phase learning speeds up the algorithm: phase 1 is conventional backprop, phase 2 is FMS.We start with phase 1 and switch to phase 2 once Ea < Etol, where Ea is the average epocherror. We switch back to phase 1 once Ea > 
 Etol. We �nish in phase 2. The experimentalsections will indicate 2-phase learning by mentioning values of 
.� Pruning of weights and units: we judge a weight wij as being pruned if its required precision(j�wijj in Hochreiter and Schmidhuber 1997a) for each input is 100 times lower (correspond-ing to 2 decimal digits) than the highest precision of the other weights for the same input.A unit is considered pruned if all incoming weights are pruned except for the bias weight,or if all outgoing weights are pruned.For more details see Hochreiter and Schmidhuber (1997a) or their home pages.Comparison. In sections 4.3 and 4.4 we compare Lococode to simple variants of \indepen-dent component analysis" (ICA, e.g., Jutten and Herault 1991, Cardoso and Souloumiac 1993,Molgedey and Schuster 1994, Comon 1994, Bell and Sejnowski 1995, Amari et al. 1996, Nadal andParga 1997) and \principal component analysis" (PCA, e.g., Oja 1989). ICA is realized by Car-doso's (1993) JADE (Joint Approximate Diagonalization of Eigen-matrices) algorithm (we used7



the Matlab JADE version obtained via FTP from sig.enst.fr). JADE is based on whiteningand subsequent joint diagonalization of 4th-order cumulant matrices. For PCA and ICA, 1,000(3,000) training exemplars are used in case of 5� 5 (7� 7) input �elds.Information content. To measure the information conveyed by the various codes obtained insections 4.3 and 4.4 we train a standard backprop net on the training set used for code generation.Its inputs are the code components; its task is to reconstruct the original input (for all tasks exceptfor \noisy bars" the original input is scaled such that all input components are in [�1:0; 1:0]). Thenet has as many biased sigmoid hidden units with activation function (AF) 11+exp(�x) as there arebiased sigmoid output units with AF 21+exp(�x) � 1. We train it for 5,000 epochs without caringfor over�tting. The training set consists of 500 �xed exemplars in the case of 5 � 5 input �elds(bars) and of 5000 in the case of 7 � 7 input �elds (real world images). The test set consists of500 o�-training set exemplars (in the case of real world images we use a separate test image). Theaverage MSE on the test set is used to determine the reconstruction error.Coding e�ciency | discrete codes. Coding e�ciency is measured by the average numberof bits needed to code a test set input pixel. The code components are scaled to the interval [0; 1]partitioned into 100 discrete intervals | this results in 100 possible discrete values. Assumingindependence of the code components we estimate the probability of each discrete code valueby Monte Carlo sampling on the training set. To obtain the bits per pixels (Shannon's optimalvalue) on the test set we divide the sum of the negative logarithms of all discrete code componentprobabilities (averaged over the test set) by the number of input components.4.2 EXPERIMENT 1: local, sparse, factorial codes | feature detectorsThe following �ve experiments demonstrate e�ects of various input representations, data dis-tributions, and architectures according to Table 1. The data always consists of 8 input vectors.Code units are initialized with a negative bias of -2.0.Constant Parameters. �� = 1:0, 
 = 2:0 (2-phase learning).Experiment 1.1: We use uniformly distributed inputs and 500,000 training examples. Pa-rameters: learning rate: 0.1, the \tolerable error" Etol = 0:1, Architecture: (8-5-8) (8 input units,5 HUs, 8 output units).Results: factorial codes. In 7 out of 10 trials, FMS e�ectively pruned 2 HUs, and produceda factorial binary code with statistically independent code components. In 2 trials FMS pruned2 HUs and produced an almost binary code | with one trinary unit taking on values of 0.0, 0.5,1.0. In one trial FMS produced a binary code with only one HU being pruned away. Obviously,under certain constraints on the input data, FMS has a strong tendency towards the compact,nonredundant codes advocated by numerous researchers.Experiment 1.2: See Table 1 for di�erences to Experiment 1.1. We use 200,000 trainingexamples and more HUs to make clear that in this case fewer units are pruned.Results: local codes. 10 trials were conducted. FMS always produced a binary code. In 7trials, only 1 HU was pruned, in the remaining trials 2 HUs. Unlike with standard BP, almost allinputs almost always were coded in an entirely local manner, i.e., only one HU was switched on,the others switched o�. Recall that local codes were also advocated by many researchers { butthey are precisely \the opposite" of the factorial codes from the previous experiment. How canLococode justify such di�erent codes? How to explain this apparent discrepancy?Explanation. The reason is: with the di�erent input representation, the additional HUsdo not necessarily result in much more additional complexity of the mappings for coding anddecoding. The zero-valued inputs allow for low weight precision (low coding complexity) forconnections leading to HUs (similarly for connections leading to output units). In contrast toExperiment 1.1 it is possible to describe the i-th possible input by the following feature: \the i-thinput component does not equal zero". It can be implemented by a low-complexity componentfunction. This contrasts the features in Experiment 1.1, where there are only 5 hidden units andno zero input components: there it is better to code with as few code components as possible,8



which yields a factorial code.Experiment 1.3: like Experiment 1.2 but with one-dimensional input. Parameters: learningrate: 0.1, Etol = 0:00004.Results: feature detectors. 10 trials were conducted. FMS always produced the followingcode: one binary HU making a distinction between input values less than 0.5 and input valuesgreater than 0.5, 2 HUs with continuous values, one of which is zero (or one) whenever the binaryunit is on, while the other is zero (one) otherwise. All remaining HUs adopt constant values ofeither 1.0 or 0.0, thus being essentially pruned away. The binary unit serves as a binary featuredetector, grouping the inputs into 2 classes.Lococode recognizes the causes. The data of Experiment 1.3 may be viewed as beinggenerated as follows: (1) �rst choose with uniform probability a value from f0:0; 0:75g; then (2)choose one from f0:05; 0:1; 0:15;0:2g; then (3) add the two values. The �rst cause of the datais recognized perfectly but the second is divided among two code components, due to the non-linearity of the output unit: adding to 0 is di�erent from adding to 0.75 (consider the �rst orderderivatives).Experiment 1.4: like Experiment 1.1 but with nonuniformly distributed inputs. Parameters:learning rate: 0.005, Etol = 0:01.Results: sparse codes. In 4 out of 10 trials, FMS found a binary code (no HUs pruned).In 3 trials: a binary code with one HU pruned. In one trial: a code with one HU removed, and atrinary unit adopting values of 0.0, 0.5, 1.0. In 2 trials: a code with one pruned HU and 2 trinaryHUs. Obviously, with this set-up, FMS prefers codes known as sparse distributed representations.Inputs with higher probability are coded by fewer active code components than inputs with lowerprobability. Typically, inputs with probability 14 lead to one active code component, inputs withprobability 18 to two, and others to three.Explanation. Why is the result di�erent from Experiment 1.1's? To achieve equal errorcontributions to all inputs, the weights for coding/decoding highly probable inputs have to begiven with higher precision than the weights for coding/decoding inputs with low probability:the input distribution from Experiment 1.1 will result in a more complex network. The nextexperiment will make this e�ect even more pronounced.Experiment 1.5: like Experiment 1.4, but with architecture (8-8-8).Results: sparse codes. In 10 trials, FMS always produced binary codes. In 2 trials only1 HU was pruned. In 1 trial 3 units were pruned. In 7 trials 2 units were pruned. Unlike withstandard BP, almost all inputs almost always were coded in a sparse, distributed manner: typically,2 HUs were switched on, the others switched o�, and most HUs responded to exactly 2 di�erentinput patterns. The mean probability of a unit being switched on was 0.28, and the probabilitiesof di�erent HUs being switched on tended to be equal.Table 1 provides an overview over Experiments 1.1 | 1.5.Conclusion. FMS always �nds codes quite di�erent from standard BP's rather unstructuredones. It tends to discover and represent the underlying causes. Usually the resulting lococode issparse and based on informative feature detectors. Depending on properties of the data it maybecome factorial or local. This suggests that Lococode may represent a general principle ofunsupervised learning subsuming previous, COCOF-based approaches.Feature-based lococodes automatically take into account input/output properties (binary?,local?, input probabilities?, noise?, number of zero input components?).4.3 EXPERIMENT 2: Independent BarsTask 2.1| adapted from Dayan and Zemel (1995), see also F�oldi�ak (1990), Zemel (1993), Saund(1995), but more di�cult (compare M. Baumgartner's 1996 diploma thesis). The input is a 5� 5pixel grid with horizontal and vertical bars at random, independent positions. See Figure 1 foran example. The task is to extract the independent features (the bars). According to Dayan andZemel (1995), even a simpler variant (where vertical and horizontal bars may not be mixed in thesame input) is not trivial: 9



Exp. input input values input architecture code resultcoding distribution components1.1 local 0.2, 0.8 uniform 8-5-8 3 factorial code1.2 local 0.0, 1.0 uniform 8-8-8 7 local code1.3 dense 0.05, 0.1, uniform 1-8-1 3 feature detectors0.15, 0.2,0.8, 0.85,0.9, 0.951.4 local 0.2, 0.8 14 , 14 , 18 , 8-5-8 4 sparse code18 , 116 , 116 ,116 , 1161.5 local 0.2, 0.8 14 , 14 , 18 , 8-8-8 6 sparse code18 , 116 , 116 ,116 , 116Table 1: Overview over experiments 1.1 { 1.5: type of input coding, possible values of inputcomponents, distribution of the 8 input vectors, architecture in the form \input-hidden-output"units, nature of the resulting lococode (which mainly depends on the nature of the input data).
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-0.5Figure 1: Task 2.1: example of partly overlapping bars. The 2nd and the 4th vertical bar andthe 2nd horizontal bar are switched on simultaneously. Left: the corresponding input values.\Although it might seem like a toy problem, the 5 � 5 bar task with only 10 hiddenunits turns out to be quite hard for all the algorithms we discuss. The coding cost ofmaking an error in one bar goes up linearly with the size of the grid, so at least oneaspect of the problem gets easier with large grids."We will see that even di�cult variants of this task are not hard for Lococode.Training and testing. Each of the 10 possible bars appears with probability 15 . In contrastto Dayan and Zemel's set-up (1995) we allow for bar type mixing. This makes the task harder(Dayan and Zemel 1995, p. 570). To test Lococode's ability to reduce redundancy, we usemany more HUs (namely 25) than the required minimum of 10. Dayan and Zemel report thatan AA trained without FMS (and more than 10 HUs) \consistently failed". This result has beencon�rmed by Baumgartner (1996).For each of the 25 pixels there is an input unit. Input units that see a pixel of a bar take onactivation 0:5, others �0:5. See Figure 1 for an example. Following Dayan and Zemel (1995), thenet is trained on 500 randomly generated patterns (there may be pattern repetitions). Learningis stopped after 5,000 epochs. We say that a pattern is processed correctly if the absolute error ofall output units is below 0.3.Details. Parameters: learning rate: 1.0, Etol = 0:16, �� = 0:001. Architecture: (25-25-25).Results: factorial (but sparse) codes. Training MSE is 0.11 (average over 10 trials). Thenet generalizes well: only one of the test patterns is not processed correctly. 15 of the 25 HUs10
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Figure 2: Task 2.1 (independent bars). Left: Lococode's input-to-hidden weights. Right:hidden-to-output weights. See text for visualization details.are indeed automatically pruned. All remaining HUs are binary: Lococode �nds an optimalfactorial code which exactly mirrors the pattern generation process. Since the expected numberof bars per input is 2, the code is also sparse.For each of the 25 HUs, Figure 2 (left) shows a 5� 5 square depicting 25 typical post-trainingweights on connections from 25 inputs (right: to 25 outputs). White (black) circles on gray (white)background are positive (negative) weights. The circle radius is proportional to the weight'sabsolute value. Figure 2 (left) also shows the bias weights (on top of the squares' upper leftcorners). The circle representing some HU's maximal absolute weight has maximal possible radius(circles representing other weights are scaled accordingly).Backprop fails. For comparison we run this task with conventional BP with 25, 15 and 10HUs. With 25 (15, 10) HUs the reconstruction error is 0.19 (0.24, 0.31). Backprop does notprune any units; the resulting weight patterns are highly unstructured, and the underlying inputstatistics are not discovered.PCA and ICA. We tried both 10 and 15 components. Figure 3 shows results. PCA producesan unstructured and dense code, ICA-10 an almost sparse code where some sources are recognizablebut not separated. ICA-15 �nds a dense code and no sources. ICA/PCA codes with 10 componentsconvey the same information as 10-component lococodes. The higher reconstruction errors forPCA-15 and ICA-15 are due to over�tting (the backprop net over-specializes on the training set).Lococode can exploit the advantages of sigmoid output functions and is applicable to nonlin-ear signal mixtures. PCA and ICA, however, are limited to linear source superpositions. Since weallow for mixing of vertical and horizontal bars, the bars do not add linearly, thus exemplifying amajor characteristic of real visual inputs. This contributes to making the task hard for PCA andICA.Task 2.2 (noisy bars). Like Task 2.1 except for additional noise: bar intensities vary in[0:1; 0:5]; input units that see a pixel of a bar are activated correspondingly (recall the constantintensity 0.5 in Task 2.1), others adopt activation �0:5. We also add Gaussian noise with variance0.05 and mean 0 to each pixel. Figure 4 shows some training exemplars generated in this way. Thetask is adapted from Hinton et al. (1995) and Hinton and Ghahramani (1997) but more di�cultbecause vertical and horizontal bars may be mixed in the same input.Details. Training, testing, coding and learning are as in Task 2.1, except that Etol = 2:5 and11
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Figure 3: Task 2.1 (independent bars). PCA and ICA: weights to code components (ICA with 10and 15 components). ICA-10 does make some sources recognizable, but does not achieve lococodequality.�� = 0:01. Etol is set to 2 times the expected minimal squared error: Etol = 2 (number of inputs)�2 = 2 � 25 � 0:05 = 2:5. To achieve consistency with Task 2.1, the target pixel value is 1.4 timesthe input pixel value (compare Task 2.1: 0:7 = 1:4 � 0:5). All other learning parameters are likein Task 2.1.Results. Training MSE is 2.5 (averaged over 10 trials); the net generalizes well. 15 of the25 HUs are pruned away. Again Lococode extracts an optimal (factorial) code which exactlymirrors the pattern generation process. Due to the bar intensity variations the remaining HUs arenot binary as in Task 2.1. Figure 5 depicts typical weights to and from HUs.PCA and ICA. Figure 6 shows results comparable to those of Task 2.1. PCA codes andICA-15 codes are unstructured and dense. ICA-10 codes, however, are almost sparse | somesources are recognizable. They are not separated though. We observe that PCA/ICA codes with10 components convey as much information as 10-component lococodes. The lower reconstructionerror for PCA-15 and ICA-15 is due to information about the current noise conveyed by theadditional code components (we reconstruct noisy inputs).Conclusion. Lococode solves a hard variant of the standard \bars" problem. It discoversthe underlying statistics and extracts the essential, statistically independent features, even inpresence of noise. Standard BP AAs accomplish none of these feats (Dayan and Zemel, 1995) |this has been con�rmed by additional experiments conducted by ourselves. ICA and PCA alsofail to extract the true input causes and the optimal features.Lococode achieves success solely by reducing information-theoretic (de)coding costs. Unlikeprevious approaches, it does not depend on explicit terms enforcing independence (e.g., Schmidhu-ber 1992), zero mutual information among code components (e.g., Linsker 1988, Deco and Parra1994), or sparseness (e.g., Field 1994, Zemel and Hinton 1994, Olshausen and Field 1996, Zemel1993, Hinton and Ghahramani 1997).Lococode vs. ICA. Like recent simple methods for \independent component analysis" (ICA,e.g., Cardoso and Souloumiac 1993, Bell and Sejnowski 1995, Amari et al. 1996) Lococodeuntangles mixtures of independent data sources. Unlike these methods, however, it does not need12
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Figure 5: Task 2.2 (independent noisy bars). Left: Lococode's input-to-hidden weights. Right:hidden-to-output weights.to know in advance the number of such sources | like \predictability minimization" (a nonlinearICA approach | Schmidhuber 1992), it simply prunes away super
uous code components.In many visual coding applications few sources determine the value of a given output (input)13
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Figure 6: Task 2.2 (independent noisy bars). PCA and ICA: weights to code components (ICAwith 10 and 15 components). Only ICA-10 codes extract a few sources, but they do not achievethe quality of lococodes.component, and the sources are easily computable from the input. Here Lococode outperformssimple ICA because it minimizes the number of low-complexity sources responsible for each outputcomponent. It may be less useful for discovering input causes that can only be represented byhigh-complexity input transformations, or for discovering many features (causes) collectively de-termining single input components (as, e.g., in acoustic signal separation). In such cases ICA doesnot su�er from the fact that each source in
uences each input component and none is computableby a low-complexity function.4.4 EXPERIMENT 3: More Realistic Visual DataTask 3.1. As in Experiment 2 the goal is to extract features from visual data. The input datais more realistic though | we use the aerial shot of a village.Details. Figure 7 shows two images with 150 � 150 pixels, each taking on one of 256 graylevels. 7�7 pixels subsections from the left hand side (right hand side) image are randomly chosenas training inputs (test inputs), where gray levels are scaled to input activations in [�0:5; 0:5].Training stop: after 150,000 training examples. Parameters: learning rate: 1.0, Etol = 3:0,�� = 0:05. Architecture: (49-25-49). Etol = 3:0,Image structure. The image is mostly dark except for certain white regions. In a pre-processing stage we map pixel values above 119 to 255 (white) and pixel values below 120 to 9di�erent gray values. The largest reconstruction errors will be due to absent information aboutwhite pixels. Our receptive �elds are too small to capture structures such as lines (streets).Results: sparse codes, on-center-o�-surrounds. 6 trials led to similar results (6 trialsseem su�cient due to tiny variance). Only 9 to 11 HUs survive. They indeed re
ect the structureof the image (compare the preprocessing stage): (1) Informative white spots are captured by on-center-o�-surround HUs. (2) Since the image is mostly dark (this also causes the o�-surrounde�ect), all output units are negatively biased. (3) Since most bright spots are connected (mostwhite pixels are surrounded by white pixels), output/input units near an active output/input unit14



Train Test

Figure 7: Task 3.1 | village image. Image sections used for training (left) and testing (right).tend to be active, too (positive weight strength decreases as one moves away from the center). (4)The entire input is covered by on-centers of surviving units | all white regions in the input willbe detected. (5) The code is sparse: few surviving white-spot-detectors are active simultaneouslybecause most inputs are mostly dark. Figure 8 depicts typical weights on connections to and fromHUs (output units are negatively biased). 10 units survive.
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Figure 8: Task 3.1 (village). Left: Lococode's input-to-hidden weights. Right: hidden-to-output weights. Most units are essentially pruned away.PCA and ICA. Figure 9 shows results for PCA and ICA. PCA-10 codes and ICA-10 codes areabout as informative as 10 component lococodes (ICA-10 a bit more and PCA-10 less). PCA-15codes convey no more information: Lococode and ICA suit the image structure better. Becausethere is no signi�cant di�erence between subsequent PCA eigenvalues after the 8th, Lococodedid �nd an appropriate number of code components.15



1 2 3 5

6 7 8 9 10

4

1 2 3 5

6

11

7 8

13

9

14

10

15

4

12

1 2 3 5

6

11

16

7

17

22

8

13

23

9

14

19

24

10

15

2018

21 25

4

12

PCA ICA 10

ICA 15

Figure 9: Task 3.1 (village). PCA and ICA (with 10 and 15 components): weights to codecomponents.Figure 10 depicts the reconstructed test image codes with code components mapped to 100intervals. Reconstruction is limited to 147 � 147 pixels of the image covered by 21 � 21 input�elds of size 7 � 7 (the 3 remaining stripes of pixels on the right and lower border are black).Code e�ciency and reconstruction error averaged over the test image are given in Table 2. Thebits required for coding the 147� 147 section of the test image are: Lococode: 14,108, ICA-10:16,255, PCA-10: 16,312 and ICA-15: 23,897.Task 3.2. Like Task 3.1, but the inputs stem from a 150� 150 pixels section of an image ofwood cells (Figure 11: left: training image, right: test image). Etol = 1:0, �� = 0:01. Trainingstop: after 250,000 training examples. All other parameters are like in Task 3.1.Image structure. The image consists of elliptic cells of various sizes. Cell interiors are bright;cell borders dark.Results. 4 trials led to similar results (4 trials seem su�cient due to tiny variance). Biasweights to HUs are negative. To activate some HU, its input must match the structure of theincoming weights to cancel the inhibitory bias. 9 to 11 units survive. They are obvious featuredetectors and can be characterized by the positions of the centers of their on-center-o�-surroundstructures relative to the input �eld. They are specialized on detecting the following cases: the on-center is north, south, west, east, northeast, northwest, southeast, southwest of a cell, or centeredon a cell, or between cells. Hence the entire input is covered by position-specialized on-centers.Figure 12 depicts typical weights on connections to and from HUs. Typical feature detectors:unit 20 detects a southeastern cell; unit 21 western and eastern cells; unit 23 cells in the northwestand southeast corners.PCA and ICA. Figure 13 shows results for PCA and ICA. PCA-11 codes and ICA-11 areabout as informative as the 11 component lococode (ICA-11 a little less and PCA-11 more). Itseems that both Lococode and ICA detect relevant sources: the positions of the cell interiors(and cell borders) relative to the input �eld. Gaps in the PCA eigenvalues occur between the 10thand the 11th, and between the 15th and the 16th. Lococode essentially found the �rst gap.Task 3.3. Like Task 3.1 | but now we use images of striped piece of wood. See Figure 14.Etol = 0:1. Training stop: after 300,000 training examples. All other parameters are like in Task3.1. 16
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Figure 10: Task 3.1 (village). 147�147 pixels of test images reconstructed by Lococode, ICA-10, PCA-10 and ICA-15. Code components are mapped to 100 discrete intervals. The secondbest method (ICA-10) requires 15 % more bits than Lococode.Image structure. The image consists of dark vertical stripes on a brighter background.Results. 4 trials led to similar results Only 3 to 5 of the 25 HUs survive and become obviousfeature detectors, now of a di�erent kind: they detect whether their receptive �eld covers a darkstripe to the left, to the right, or in the middle.Figure 15 depicts typical weights on connections to and from HUs. Example feature detectors:unit 6 detects a dark stripe to the left, unit 11 a dark stripe in the middle, unit 15 dark stripesleft and right, unit 25 a dark stripe to the right.PCA and ICA. See Figure 16. PCA-4 codes and ICA-4 codes are about as informative as4-component lococodes. Component structures of PCA/ICA codes and lococodes are very similar:17
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Figure 11: Task 3.2 | wood cells. Image sections used for training (left) and testing (right).
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Figure 12: Task 3.2 (cells). Left: Lococode's input-to-hidden weights. 11 units survive.all detect the positions of dark stripes relative to the input �eld. Gaps in the PCA eigenvaluesoccur between 3rd and 4th, 4th and 5th, 5th and 6th. Lococode automatically extracts about 4relevant components.4.4.1 Overview over experiments 2 and 3Table 2 shows that most lococodes and some ICA codes are sparse, while most PCA codes aredense. Assuming that each visual input consists of many components collectively describable byfew input features, Lococode seems preferable.Conclusion. Unlike standard BP-trained AAs, FMS-trained AAs generate highly structuredsensory codes. FMS automatically prunes super
uous units. PCA experiments indicate that theremaining code units suit the various coding tasks well. Taking into account statistical prop-18
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Figure 13: Task 3.2 (cells). PCA and ICA (with 11 and 15 components): weights to codecomponents.
Train Test

Figure 14: Task 3.3 | striped wood. Image sections used for training (left) and testing(right).erties of the visual input data, Lococode generates appropriate feature detectors such as thefamiliar on-center-o�-surround and bar detectors. It also produces biologically plausible sparsecodes (standard AAs do not). FMS's objective function, however, does not contain explicit termsenforcing such codes (this contrasts previous methods, e.g., Olshausen and Field 1996).The experiments show that equally-sized PCA codes, ICA codes, and lococodes convey ap-19
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Figure 15: Task 3.3 (stripes). Left: Lococode's input-to-hidden weights. 4 units survive.
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Figure 16: Task 3.3 (stripes). PCA and ICA (with 11 and 15 components).proximately the same information. Lococode, however, codes with fewer bits per pixel. UnlikePCA and ICA, it determines the code size automatically. Some of the feature detectors obtainedby Lococode are similar to those found by ICA. In cases where we know the true input causes,however, Lococode does �nd them whereas ICA does not.4.5 EXPERIMENT 4: vowel recognitionLococodes cannot only be justi�ed by reference to previous ideas on what's a \desirable" code.Next we will show that they can help to achieve superior generalization performance on a stan-dard supervised learning benchmark problem. This section's focus on speech data also illustratesLococodes's versatility: its applicability is not limited to visual data.20



Exp. input method # code reconst. code type code e�cency�eld comp. error { reconst.bars 5� 5 LOC 10 0.08 sparse (factorial) 1.22 { 0.09bars 5� 5 ICA 10 0.08 almost sparse 1.44 { 0.09bars 5� 5 PCA 10 0.09 dense 1.43 { 0.09bars 5� 5 ICA 15 0.09 dense 2.19 { 0.10bars 5� 5 PCA 15 0.16 dense 2.06 { 0.16noisy bars 5� 5 LOC 10 1.05 sparse (factorial) 1.37 { 1.06noisy bars 5� 5 ICA 10 1.02 almost sparse 1.68 { 1.03noisy bars 5� 5 PCA 10 1.03 dense 1.66 { 1.04noisy bars 5� 5 ICA 15 0.71 dense 2.50 { 0.73noisy bars 5� 5 PCA 15 0.72 dense 2.47 { 0.72village image 7� 7 LOC 10 8.29 sparse 0.69 { 8.29village image 7� 7 ICA 10 7.90 dense 0.80 { 7.91village image 7� 7 PCA 10 9.21 dense 0.80 { 9.22village image 7� 7 ICA 15 6.57 dense 1.20 { 6.58village image 7� 7 PCA 15 8.03 dense 1.19 { 8.04wood cell image 7� 7 LOC 11 0.84 sparse 0.96 { 0.86wood cell image 7� 7 ICA 11 0.87 sparse 0.98 { 0.89wood cell image 7� 7 PCA 11 0.72 almost sparse 0.96 { 0.73wood cell image 7� 7 ICA 15 0.36 sparse 1.32 { 0.39wood cell image 7� 7 PCA 15 0.33 dense 1.28 { 0.34wood piece image 7� 7 LOC 4 0.83 almost sparse 0.39 { 0.84wood piece image 7� 7 ICA 4 0.86 almost sparse 0.40 { 0.87wood piece image 7� 7 PCA 4 0.83 almost sparse 0.40 { 0.84wood piece image 7� 7 ICA 10 0.72 almost sparse 1.00 { 0.76wood piece image 7� 7 PCA 10 0.53 almost sparse 0.91 { 0.54Table 2: Overview over experiments 2 and 3: name of experiment, input �eld size, coding method,number of relevant code components (code size), reconstruction error, nature of code observedon the test set. PCA's and ICA's code sizes are prewired. Lococode's, however, are foundautomatically. The �nal column shows coding e�ciency measured in bits per pixels (for codecomponents mapped to 100 discrete intervals) and reconstruction error (for this discrete code).Lococode exhibits superior coding e�ciency.Task. We recognize vowels, using vowel data from Scott Fahlman'sCMU benchmark collection(see also Robinson 1989). There are 11 vowels and 15 speakers. Each speaker spoke each vowel6 times. Data from the �rst 8 speakers is used for training. The other data is used for testing.This means 528 frames for training and 462 frames for testing. Each frame consists of 10 inputcomponents obtained by low pass �ltering at 4.7kHz, digitized to 12 bits with a 10 kHz samplingrate. A twelfth order linear predictive analysis was carried out on six 512 sample Hamming-windowed segments from the steady part of the vowel. The re
ection coe�cients were used tocalculate 10 log area parameters, providing the 10 dimensional input space.Coding. The training data is coded using an FMS AA. Architecture: (10-30-10). The inputcomponents are linearly scaled in [-1,1]. The AA is trained with 107 pattern presentations. Thenits weights are frozen.Classi�cation. From now on, the vowel codes across all nonconstant HUs are used as inputsfor a conventional supervised BP classi�er, which is trained to recognize the vowels from the code.The classi�er's architecture is ((30 � c)-11-11), where c is the number pruned HUs in the AA.The hidden and output units are sigmoid with activation function 21+exp(�x) � 1, and receive anadditional bias input. The classi�er is trained with another 107 pattern presentations.Parameters. AA net: learning rate: 0.02, Etol = 0:015, �� = 0:2, 
 = 2:0. Backpropclassi�er: learning rate: 0.002. 21



Over�tting. We con�rm Robinson's results: the classi�er tends to over�t when trained bysimple BP | during learning, the test error rate �rst decreases and then increases again.Comparison. We compare: (1) Various neural nets (see Table 1). (2) Nearest neighbor: clas-si�es an item as belonging to the class of the closest example in the training set (using Euclideandistance). (3) LDA: linear discriminant analysis. (4) Softmax: observation assigned to class withbest �t value. (5) QAD: quadratic discriminant analysis (observations are classi�ed as belongingto the class with closest centroid, using Mahalanobis distance based on the class-speci�c covariancematrix). (6) CART: classi�cation and regression tree (coordinate splits and default input param-eter values are used). (7) FDA/BRUTO: 
exible discriminant analysis using additive models withadaptive selection of terms and splines smoothing parameters. BRUTO provides a set of basisfunctions for better class separation. (8) Softmax/BRUTO: best �t value for classi�cation usingBRUTO. (9) FDA/MARS: FDA using multivariate adaptive regression splines. MARS builds abasis expansion for better class separation. (10) Softmax/MARS: best �t value for classi�cationusing MARS. (11) Lococode/Backprop: \unsupervised" codes generated by Lococode withFMS, fed into a conventional, over�tting BP classi�er.Technique nr. hidden error ratesunits training test(1.1) Single-layer perceptron { { 0.67(1.2.1) Multi-layer perceptron 88 { 0.49(1.2.2) Multi-layer perceptron 22 { 0.55(1.2.3) Multi-layer perceptron 11 { 0.56(1.3.1) Modi�ed Kanerva Model 528 { 0.50(1.3.2) Modi�ed Kanerva Model 88 { 0.57(1.4.1) Radial Basis Function 528 { 0.47(1.4.2) Radial Basis Function 88 { 0.52(1.5.1) Gaussian node network 528 { 0.45(1.5.2) Gaussian node network 88 { 0.47(1.5.3) Gaussian node network 22 { 0.46(1.5.4) Gaussian node network 11 { 0.53(1.6.1) Square node network 88 { 0.45(1.6.2) Square node network 22 { 0.49(1.6.3) Square node network 11 { 0.50(2) Nearest neighbor { { 0.44(3) LDA { 0.32 0.56(4) Softmax { 0.48 0.67(5) QDA { 0.01 0.53(6.1) CART { 0.05 0.56(6.2) CART (linear comb. splits) { 0.05 0.54(7) FDA / BRUTO { 0.06 0.44(8) Softmax / BRUTO { 0.11 0.50(9.1) FDA / MARS (degree 1) { 0.09 0.45(9.2) FDA / MARS (degree 2) { 0.02 0.42(10.1) Softmax / MARS (degree 1) { 0.14 0.48(10.2) Softmax / MARS (degree 2) { 0.10 0.50(11) Lococode / Backprop 30/11 0.05 0.42Table 3: Vowel recognition task: generalization performance of di�erent methods. Surprisingly,FMS-generated lococodes fed into a conventional, over�tting backprop classi�er led to excellentresults. See text for details.Results. See Table 3. FMS generates 3 di�erent lococodes. Each is fed into 10 BP classi�erswith di�erent weight initializations: the table entry for \Lococode/Backprop" represents themean of 30 trials. The results for neural nets and nearest neighbor are taken from Robinson(1989). The other results (except for Lococode's) are taken from Hastie et al. (1993). Our22



method led to excellent generalization results. The error rates after BP learning vary between 39and 45 %.Backprop fed with Lococode code sometimes goes down to 38 % error rate, but due toover�tting, the error rate increases again (of course, test set performance may not in
uence thetraining procedure). Given that BP by itself is a very naive approach it seems quite surprisingthat excellent generalization performance can be obtained just by feeding BP with nongoal-speci�clococodes.Typical feature detectors. The number of pruned HUs (with constant activation) variesbetween 5 and 10. 2 to 5 HUs become binary, and 4 to 7 trinary. With all codes we observed:apparently, certain HUs become feature detectors for speaker identi�cation. Another HU's acti-vation is near 1.0 for the words \heed" and \hid" (\i" sounds). Another HU's activation has highvalues for the words \hod", \hoard", \hood" and \who'd" (\o"-words) and low but nonzero valuesfor \hard" and \heard". Lococode supports feature detection.Why no sparse code? The real-valued input components cannot be described precisely bythe activations of the few feature detectors generated by Lococode. Additional real-valued HUsare necessary for representing the missing information.Better results with additional information. Hastie et al. also obtained additional, evenslightly better results with an FDA/MARS variant: down to 39 % average error rate. It should bementioned, however, that their data was subject to goal-directed preprocessing with splines, suchthat there were many clearly de�ned classes. Furthermore, to determine the input dimension,Hastie et al. used a special kind of generalized cross-validation error, where one constant wasobtained by unspeci�ed \simulation studies". Hastie and Tibshirani (1996) also obtained anaverage error rate of 38 % with discriminant adaptive nearest neighbor classi�cation. Aboutthe same error rate was obtained by Flake (1998) with RBF networks and hybrid architectures.Also, recent experiments (mostly conducted during the time this paper has been under review)showed that even better results can be obtained by using additional context information to improveclassi�cation performance, e.g., Turney (1993), Herrmann (1997), and Tenenbaum and Freeman(1997). For an overview see Schraudolph (1998). It will be interesting to combine these methodswith Lococode.Conclusion. Although we made no attempt at preventing classi�er over�tting, we achievedexcellent results. From this we conclude that the lococodes fed into the classi�er already conveyedthe \essential", almost noise-free information necessary for excellent classi�cation. We are led tobelieve that Lococode is a promising method for data preprocessing.5 CONCLUSIONLococode, our novel approach to unsupervised learning and sensory coding, does not de�ne codeoptimality solely by properties of the code itself but takes into account the information-theoreticcomplexity of the mappings used for coding and decoding. The resulting lococodes typicallycompromise between con
icting goals. They tend to be sparse and exhibit low but not minimalredundancy | if the costs of generating minimal redundancy are too high. Lococodes tend towardsbinary, informative feature detectors, but occasionally there are trinary or continuous-valued codecomponents (where complexity considerations suggest such alternatives).A general principle? According to our analysis Lococode essentially attempts at describingsingle inputs with as few and as simple features as possible. Depending on the statistical propertiesof the input, this can result in either local, factorial, or sparse codes, although biologically plausiblesparseness is the most common case. Unlike the objective functions of previous methods (e.g.,Olshausen and Field 1996), however, Lococode's does not contain an explicit term enforcing,say, sparse codes | sparseness or factoriality are not viewed as a good things a priori. This seemsto suggest that Lococode's objective may embody a general principle of unsupervised learninggoing beyond previous, more specialized ones.Regularizers and unsupervised learning. Another way of looking at our results is this:there is at least one representative (FMS) of a broad class of algorithms (regularizer algorithms23



that reduce net complexity) which can do optimal feature extraction as a by-product. This reveilsan interesting, previously ignored connection between two important �elds (regularizer researchand ICA-related research), and may represent a �rst step towards uni�cation of regularization andunsupervised learning.Advantages. Lococode is appropriate if single inputs (with many input components) canbe described by few features computable by simple functions. Hence, assuming that visual datacan be reduced to few simple causes, Lococode is appropriate for visual coding. Unlike simpleICA, Lococode (a) is not inherently limited to the linear case, and (b) does not need a prioriinformation about the number of independent data sources. Even when the number of sources isknown, however, Lococode can outperform other coding methods. This has been demonstratedby our Lococode implementation based on FMS-trained autoassociators (AAs), which easilysolves coding tasks that have been described as hard by other authors, and whose input causes arenot perfectly separable by standard AAs, PCA, and ICA. Furthermore, when applied to realisticvisual data, Lococode produces familiar on-center-o�-surround receptive �elds and biologicallyplausible sparse codes (standard AAs do not). Codes obtained by ICA, PCA and Lococodeconvey about the same information, as indicated by the reconstruction error. But Lococode'scoding e�ciency is higher: it needs fewer bits per input pixel. Our experiments also demonstratethe utility of Lococode-based data preprocessing for subsequent classi�cation.Limitations. FMS' order of computational complexity depends on the number of output units.For typical classi�cation tasks (requiring few output units) it equals standard backprop's. In theAA case, however, the output's dimensionality grows with the input's. That's why large scaleFMS-trained AAs seem to require parallel implementation. Furthermore, although Lococodeworks well for visual inputs, it may be less useful for discovering input causes that can only berepresented by high-complexity input transformations, or for discovering many features (causes)collectively determining single input components (as, e.g., in acoustic signal separation, whereICA does not su�er from the fact that each source in
uences each input component and none iscomputable by a low-complexity function).Future work. Encouraged by the familiar lococodes obtained in our experiments with visualdata we intend to move on to higher-dimensional inputs and larger receptive �elds. This may leadto even more pronounced feature detectors like those observed by Schmidhuber et al. (1996). Itwill also be interesting to test whether successive Lococode stages, each feeding its code intothe next, will lead to complex feature detectors such as those discovered in deeper regions of themammalian visual cortex. Finally, encouraged by our successful application to vowel classi�cation,we intend to look at more complex pattern recognition tasks.We also intend to look at alternative Lococode implementations besides FMS-based AAs.Finally we would like to improve our understanding of the relationship between low-complexitycodes, low-complexity art (see Schmidhuber, 1997b) and informal notions such as \beauty" and\good art".6 ACKNOWLEDGMENTSWe would like to thank Peter Dayan, Manfred Opper, Nic Schraudolph, Rich Zemel, and severalanonymous reviewers for helpful discussions and for comments on a draft of this paper. Thiswork was supported by DFG grant SCHM 942/3-1 and DFG grant BR 609/10-2 from \DeutscheForschungsgemeinschaft". Schmidhuber would also like to acknowledge support from SNF grant21-43'417.95 \predictability minimization".ReferencesAmari, S., Cichocki, A., and Yang, H. (1996). A new learning algorithm for blind signal separa-tion. In Touretzky, D. S., Mozer, M. C., and Hasselmo, M. E., editors, Advances in NeuralInformation Processing Systems 8, pages 757{763. The MIT Press, Cambridge, MA.24
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