
GUESSING CAN OUTPERFORM MANYLONG TIME LAG ALGORITHMSTechnical Note IDSIA-19-96J�urgen SchmidhuberIDSIACorso Elvezia 366900 Lugano, Switzerlandjuergen@idsia.chhttp://www.idsia.ch/~juergen
Sepp HochreiterFakult�at f�ur InformatikTechnische Universit�at M�unchen80290 M�unchen, Germanyhochreit@informatik.tu-muenchen.dehttp://www7.informatik.tu-muenchen.de/~hochreitMay 6, 1996AbstractNumerous recent papers focus on standard recurrent nets' problems with long time lagsbetween relevant signals. Some propose rather sophisticated, alternative methods. We show:many problems used to test previous methods can be solved more quickly by random weightguessing.Introduction. The main problem of gradient-based, recurrent nets (see, e.g., overviews byWilliams, 1989; Pearlmutter, 1995) is this: error signals \
owing backwards in time" tend toeither blow up or vanish (for the �rst, detailed, theoretical analysis see Hochreiter, 1991 | thevanishing error case was later also treated by Bengio et al., 1994). That's why standard recurrentnets cannot deal with long time lags between relevant input/error signals. Rather sophisticated,alternative methods were proposed. For instance, Bengio et al. (1994) investigate simulatedannealing, multi-grid random search, time-weighted pseudo-Newton optimization, and discreteerror propagation. Bengio and Frasconi (1994) also propose an EM approach for propagatingtargets. Quite a few papers use Bengio et al.'s \2-sequence problem" (and \latch problem") toshow the proposed algorithms's superiority, e.g., Bengio et al. (1994), Bengio and Frasconi (1994),El Hihi and Bengio (1995), Lin et al. (1995). For the same purpose, some papers also use the so-called \parity problem", e.g., Bengio et al. (1994), Bengio and Frasconi (1994). Some of Tomita'sgrammars (1982) are also often used as benchmark problems for recurrent nets (see, e.g., Bengioand Frasconi, 1995; Watrous and Kuhn, 1992; Pollack, 1991; Miller and Giles, 1993; Manoliosand Fanelli, 1994). This paper exempli�es: such problems can be solved more quickly by randomweight guessing than by the proposed algorithms.Guessing. With a given architecture, random weight guessing works as follows: REPEATrandomly initialize the weights UNTIL the resulting net happens to classify all training sequencescorrectly. Then test on a test set (for more sophisticated guessing with bias towards nets with lowLevin complexity, see Schmidhuber, 1995). In all our experiments, we randomly initialize weightsin [-100.0,100.0]. Binary inputs are -1.0 (for 0) and 1.0 (for 1). Targets are either 1.0 or 0.0. Allactivation functions are sigmoid in [0.0,1.0]. We use two architectures (A1, A2) suitable for manywidely used \benchmark" problems: A1 is a recurrent, fully connected net with 1 input, 1 output,and n biased hidden units. A2 is like A1 with n = 10, but less densely connected: each hidden unitsees the input unit, the output unit, and itself; the output unit sees all other units; all units arebiased. We will indicate where we also use di�erent architectures of other authors. All activationsare set to 0 at each sequence begin. All sequence lengths are randomly chosen between 500 and600 (most other authors actually facilitate their problems by using much shorter training/test1

sequences). The \benchmark" problems always require to classify two types of sequences. Ourtraining set consists of 100 sequences, 50 from class 1 (target 0) and 50 from class 2 (target 1).Correct sequence classi�cation is de�ned as \absolute error at sequence end below 0.1". We stopthe search once a random weight matrix correctly classi�es all training sequences. Then we test onthe test set (100 sequences). All results below are averages of 10 trials. In all our simulationsbelow, guessing �nally classi�ed all test set sequences correctly; average absolute testset errors were always below 0.001 | in most cases below 0.0001.\2-sequence problem" (and \latch problem", e.g., Bengio et al., 1994; Bengio and Frasconi,1994; Lin et al., 1995). The task is to observe and classify input sequences. There are two classes.There is only one input unit or input line. Only the �rst N real-valued sequence elements conveyrelevant information about the class. Sequence elements at positions t > N (we use N = 1) aregenerated by a Gaussian with mean zero and variance 0.2. The �rst sequence element is 1.0 forclass 1, and -1.0 for class 2. Target at sequence end is 1.0 for class 1 and 0.0 for class 2 (thelatch problem is a simple version of the 2-sequence problem that allows for input tuning insteadof weight tuning).Bengio et al.'s results. For the 2-sequence problem, the best method among the six testedby Bengio et al. (1994) was multigrid random search (sequence lengths 50 | 100; no precisestopping criterion mentioned), which solved the problem after 6,400 sequence presentations, with�nal classi�cation error 0.06. In more recent work (1994), Bengio and Frasconi were able toimprove their results: an EM-approach was reported to solve the problem within 2,900 trials.Results with guessing. Random guessing with architecture A2 (A1, n = 1) solves theproblem within 718 (1247) trials on average. Using Bengio et al.'s 1994 architecture for the latchproblem (only 3 parameters), the problem was solved within 22 (twenty-two) trials on average, dueto tiny parameter space. Random guessing outperforms Bengio et al.'s methods in every respect:(1) many fewer trials required, (2) less computation time per trial. Also, in most cases (3) thesolution quality is better (less error).\Parity problem" (Bengio et al., 1994; Bengio and Frasconi, 1994). The task requires toclassify sequences consisting of 1's and -1's according to whether the number of 1's is even or odd.The target at sequence end is 1.0 for odd and 0.0 for even.Bengio et al.'s results. For sequences with only 25-50 steps, among the six methods testedby Bengio et al. (1994), only simulated annealing was reported to achieve �nal classi�cation errorof 0.000 (within about 810,000 trials | the authors did not mention the precise stopping criterion).A method called \discrete error BP" took about 54,000 trials to achieve �nal classi�cation error0.05. In Bengio and Frasconi's more recent work (1994), for sequences with 250-500 steps, theirEM-approach took about 3,400 trials to achieve �nal classi�cation error 0.12.Results with guessing. Guessing with A1 (n = 1, identical to Bengio et al.'s 1994 architec-ture) solved the problem within 2906 trials on average. Guessing with A2 solved it within 2797trials. We also ran another experiment with architecture A2, but without self-connections for thehidden units. Guessing solved the problem within 250 trials on average.Tomita grammars. Many authors also use Tomita's grammars (1982) to test their algo-rithms. See, e.g., Bengio and Frasconi (1995), Watrous and Kuhn (1992), Pollack (1991), Millerand Giles (1993), Manolios and Fanelli (1994). Since we already tested parity problems above,we now focus on a few \parity-free" Tomita grammars (nr.s #1, #2, #4). Previous work facili-tated the problems by restricting sequence length. E.g., Miller and Giles' maximal test (training)sequence length is 15 (10). Miller and Giles (1993) report the number of sequences required forconvergence (for various �rst and second order nets with 3 to 9 units): Tomita #1: 23,000 {46,000; Tomita #2: 77,000 { 200,000; Tomita #4: 46,000 { 210,000. Guessing, however, clearlyoutperforms Miller and Giles' methods. The average results are: Tomita #1: 182 (A1, n = 1) and288 (A2), Tomita #2: 1,511 (A1, n = 3) and 17,953 (A2), Tomita #4: 13,833 (A1, n = 2) and35,610 (A2).Flat minima. It should be mentioned that successful guessing typically hits
at minima ofthe error function (Hochreiter and Schmidhuber, 1996).Feedforward nets. It should also be mentioned that solutions to many well-known, simple,nontemporal tasks such as XOR can be guessed within less than 100 trials on numerous standard2

feedforward architectures.Limitations of guessing. There are many tasks that require either many free parameters(e.g., input weights) or high weight precision, such that random search becomes completely infea-sible (e.g., Schmidhuber's task, 1992). For such problems, we recommend to try a novel methodcalled \Long Short Term Memory", or LSTM for short (Hochreiter and Schmidhuber, 1995).LSTM does not su�er from the above-mentioned problems of other gradient-based approaches.It can solve non-trivial, complex long time lag problems involving distributed, high-precision,continuous-valued representations.AcknowledgmentsThis work was supported by DFG grant SCHM 942/3-1 from \Deutsche Forschungsgemeinschaft".ReferencesBengio, Y. and Frasconi, P. (1994). Credit assignment through time: Alternatives to backpropagation.In Cowan, J. D., Tesauro, G., and Alspector, J., editors, Advances in Neural Information ProcessingSystems 6, pages 75{82. San Mateo, CA: Morgan Kaufmann.Bengio, Y. and Frasconi, P. (1995). An input output HMM architecture. In Tesauro, G., Touretzky, D. S.,and Leen, T. K., editors, Advances in Neural Information Processing Systems 7, pages 427{434. MITPress, Cambridge MA.Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descentis di�cult. IEEE Transactions on Neural Networks, 5(2):157{166.El Hihi, S. and Bengio, Y. (1995). Hierarchical recurrent neural networks for long-term dependencies. InAdvances in Neural Information Processing Systems 8. To appear.Hochreiter, J. (1991). Untersuchungen zu dynamischen neuronalen Netzen. Diploma thesis, Institut f�urInformatik, Lehrstuhl Prof. Brauer, Technische Universit�at M�unchen.Hochreiter, S. and Schmidhuber, J. (1995). Long short term memory. Technical Report FKI-207-95,Fakult�at f�ur Informatik, Technische Universit�at M�unchen. Revised version submitted to NeuralComputation, 1996.Hochreiter, S. and Schmidhuber, J. (1996). Flat minima. Neural Computation. In press.Lin, T., Horne, B. G., Tino, P., and Giles, C. L. (1995). Learning long-term dependencies is not asdi�cult with NARX recurrent neural networks. Technical Report UMIACS-TR-95-78 and CS-TR-3500, Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742.Manolios, P. and Fanelli, R. (1994). First-order recurrent neural networks and deterministic �nite stateautomata. Neural Computation, 6:1155{1173.Miller, C. B. and Giles, C. L. (1993). Experimental comparison of the e�ect of order in recurrent neuralnetworks. International Journal of Pattern Recognition and Arti�cial Intelligence, 7(4):849{872.Pearlmutter, B. A. (1989). Learning state space trajectories in recurrent neural networks. Neural Com-putation, 1(2):263{269.Pollack, J. B. (1991). The induction of dynamical recognizers. Machine Learning, 7:227{252.Schmidhuber, J. H. (1992). Learning complex, extended sequences using the principle of history compres-sion. Neural Computation, 4(2):234{242.Schmidhuber, J. H. (1995). Discovering solutions with low Kolmogorov complexity and high generalizationcapability. In Prieditis, A. and Russell, S., editors, Machine Learning: Proceedings of the TwelfthInternational Conference, pages 488{496. Morgan Kaufmann Publishers, San Francisco, CA.Tomita, M. (1982). Dynamic construction of �nite automata from examples using hill-climbing. InProceedings of the Fourth Annual Cognitive Science Conference, pages 105{108. Ann Arbor, MI.Watrous, R. L. and Kuhn, G. M. (1992). Induction of �nite-state languages using second-order recurrentnetworks. Neural Computation, 4:406{414.Williams, R. J. (1989). Complexity of exact gradient computation algorithms for recurrent neural net-works. Technical Report Technical Report NU-CCS-89-27, Boston: Northeastern University, Collegeof Computer Science. 3

