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Abstract

We present a new algorithm for �nding low complexity networks
with high generalization capability	 The algorithm searches for
large connected regions of so
called ��at
 minima of the error func

tion	 In the weight
space environment of a ��at
 minimum� the
error remains approximately constant	 Using an MDL
based ar

gument� �at minima can be shown to correspond to low expected
over�tting	 Although our algorithm requires the computation of
second order derivatives� it has backprop�s order of complexity	
Experiments with feedforward and recurrent nets are described	 In
an application to stock market prediction� the method outperforms
conventional backprop� weight decay� and �optimal brain surgeon
	

� INTRODUCTION

Previous algorithms for �nding low complexity networks with high generalization
capability are based on signi�cant prior assumptions	 They can be broadly classi�ed
as follows� ��� Assumptions about the prior weight distribution� Hinton and van
Camp ��� and Williams ���� assume that pushing the posterior distribution �after
learning� close to the prior leads to �good
 generalization	 Weight decay can be
derived e	g	 from Gaussian priors	 Nowlan and Hinton ���� assume that networks
with many similar weights generated by Gaussian mixtures are �better
 a priori	
MacKay�s priors ��� are implicit in additional penalty terms� which embody the

�hochreit�informatik�tu�muenchen�de
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assumptions made	 ��� Prior assumptions about how theoretical results on early
stopping and network complexity carry over to practical applications� Examples are
methods based on validation sets �see ����� Vapnik�s �structural risk minimization

��� ����� and the methods of Holden ��� and Wang et al	 ����	 Our approach requires
less prior assumptions than most other approaches �see appendix A	��	

Basic idea of �at minima search	 Our algorithm �nds a large region in weight
space with the property that each weight vector from that region has similar small
error	 Such regions are called ��at minima
	 To get an intuitive feeling for why
��at
 minima are interesting� consider this �see also Wolpert ������ a �sharp
 mini

mumcorresponds to weights which have to be speci�ed with high precision	 A ��at

minimumcorresponds to weights many of which can be given with low precision	 In
the terminology of the theory of minimum description length �MDL�� fewer bits of
information are required to pick a ��at
 minimum �corresponding to a �simple
 or
low complexity
network�	 The MDL principle suggests that low network complex

ity corresponds to high generalization performance �see e	g	 ��� ����	 Unlike Hinton
and van Camp�s method ��� �see appendix A	��� our approach does not depend on
explicitly choosing a �good
 prior	

Our algorithm �nds ��at
 minima by searching for weights that minimize both
training error and weight precision	 This requires the computation of the Hessian	
However� by using Pearlmutter�s and M�ller�s e�cient second order method ���� ���
we obtain the same order of complexity as with conventional backprop	 Automat�
ically� the method e�ectively reduces numbers of units� weigths� and input lines�
as well as the sensitivity of outputs with respect to remaining weights and units�
Excellent experimental generalization results will be reported in section �	

� TASK � ARCHITECTURE � BOXES

Generalization task� The task is to approximate an unknown relation �D � X�Z
between a set of inputs X � RN and a set of outputs Z � RK 	 �D is taken to be
a function	 A relation D is obtained from �D by adding noise to the outputs	 All
training information is given by a �nite relation D� � D	 D� is called the training
set	 The pth element of D� is denoted by an input�target pair �xp� dp�	

Architecture� For simplicity� we will focus on a standard feedforward net �but in
the experiments� we will use recurrent nets as well�	 The net has N input units�
K output units� W weights� and di�erentiable activation functions	 It maps input
vectors xp � RN to output vectors op � RK 	 The weight from unit j to i is denoted
by wij	 The W 
dimensional weight vector is denoted by w	

Training error� Mean squared error Eq�w�D�� ��
�

jD�j

P
�xp �dp��D�

k dp�op k� is
used� where k � k denotes the Euclidian norm� and j�j denotes the cardinality of a set	
To de�ne regions in weight space with the property that each weight vector from
that region has �similar small error
� we introduce the tolerable error Etol� a positive
constant	 �Small
 error is de�ned as being smaller than Etol	 Eq�w�D�� � Etol

implies �under�tting
	

Boxes� Each weight w satisfying Eq�w�D�� � Etol de�nes an �acceptable mini

mum
	We are interested in large regions of connected acceptable minima�



Such regions are called �at minima� They are associated with low ex�
pected generalization error �see ����	 To simplify the algorithm for �nding large
connected regions �see below�� we do not consider maximal connected regions but
focus on so
called 	boxes
 within regions� for each acceptable minimum w� its box
Mw in weight space is a W 
dimensional hypercuboid with center w	 For simplicity�
each edge of the box is taken to be parallel to one weight axis	 Half the length of the
box edge in direction of the axis corresponding to weight wij is denoted by  wij�
which is the maximal �positive� value such that for all i� j� all positive �ij �  wij
can be added to or subtracted from the corresponding component of w simultane

ously without violating Eq��� D�� � Etol � wij gives the precision of wij�	 Mw�s
box volume is de�ned by  w �� �W

Q
i�j wij	

� THE ALGORITHM

The algorithm is designed to �nd a w de�ning a box Mw with maximal box vol

ume  w	 This is equivalent to �nding a box Mw with minimal !B�w�D�� ��

� log� w��W � �Pi�j � log wij	 Note the relationship to MDL � !B is the number
of bits required to describe the weights�	 In appendix A	�� we derive the following
algorithm	 It minimizes E�w�D�� � Eq�w�D�� " �B�w�D��� where

B �
�

�
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Here ok is the activation of the kth output unit� � is a constant� and � is a positive
variable ensuring either Eq�w�D�� � Etol� or ensuring an expected decrease of
Eq��� D�� during learning �see ���� for adjusting ��	

E�w�D�� is minimized by gradient descent	 To minimize B�w�D��� we compute

	B�w�D��

	wuv
�
X
k�i�j

	B�w�D��

	� �o
k

�wij
�

	�ok

	wij	wuv
for all u� v 	 ���

It can be shown �see ���� that by using Pearlmutter�s and M�ller�s e�cient second
order method ���� ��� the gradient of B�w�D�� can be computed in O�W � time �see
details in ����	 Therefore� our algorithm has the same order of complexity
as standard backprop�

� EXPERIMENTAL RESULTS �see ��� for details	

EXPERIMENT � � noisy classi	cation� The �rst experiment is taken from
Pearlmutter and Rosenfeld ����	 The task is to decide whether the x
coordinate of
a point in �
dimensional space exceeds zero �class �� or does not �class ��	 Noisy
training examples are generated as follows� data points are obtained from a Gaus

sian with zero mean and stdev �	�� bounded in the interval ������ ����	 The data
points are misclassi�ed with a probability of ����	 Final input data is obtained by
adding a zero mean Gaussian with stdev �	�� to the data points	 In a test with
��������� data points� it was found that the procedure above leads to �	�� per cent



Backprop New approach Backprop New approach
MSE dto MSE dto MSE dto MSE dto

� �	��� �	�� �	��� �	�� � �	��� �	�� �	��� �	��
� �	��� �	�� �	��� �	�� � �	��� �	�� �	��� �	��
� �	��� �	�� �	��� �	�� � �	��� �	�� �	��� �	��
� �	��� �	�� �	��� �	�� � �	��� �	�� �	��� �	��
� �	��� �	�� �	��� �	�� �� �	��� �	�� �	��� �	��

Table �� �� comparisons of conventional backprop �BP� and our new method �FMS��
The second row �labeled 	MSE
� shows mean squared error on the test set� The third
row �	dto
� shows the di�erence between the fraction �in per cent� of misclassi�ca�
tions and the optimal fraction �
����� The remaining rows provide the analoguous
information for the new approach� which clearly outperforms backprop�

misclassi�ed data	 No method will misclassify less than �	�� per cent� due to the
inherent noise in the data	 The training set is based on ��� �xed data points	 The
test set is based on ������� data points	

Results� �� conventional backprop �BP� nets were tested against �� equally ini

tialized networks based on our new method ���at minima search
� FMS�	 After
����� epochs� the weights of our nets essentially stopped changing �automatic 	early
stopping
�� while backprop kept changing weights to learn the outliers in the data
set and over�t� In the end� our approach left a single hidden unit h with a maximal
weight of ���� or ����� from the x
axis input	 Unlike with backprop� the other
hidden units were e�ectively pruned away �outputs near zero�	 So was the y
axis
input �zero weight to h�	 It can be shown that this corresponds to an �optimal

net with minimal numbers of units and weights	 Table � illustrates the superior
performance of our approach	

EXPERIMENT 
 � recurrent nets� The method works for continually running
fully recurrent nets as well	 At every time step� a recurrent net with sigmoid
activations in ��� �� sees an input vector from a stream of randomly chosen input
vectors from the set f��� ��� ��� ��� ������ �����g	 The task is to switch on the �rst
output unit whenever an input ��� �� had occurred two time steps ago� and to switch
on the second output unit without delay in response to any input ��� ��	 The task
can be solved by a single hidden unit	

Results� With conventional recurrent net algorithms� after training� both hidden
units were used to store the input vector	 Not so with our new approach	 We
trained �� networks	 All of them learned perfect solutions	 Like with weight decay�
most weights to the output decayed to zero	 But unlike with weight decay� strong
inhibitory connections �
��	�� switched o� one of the hidden units� e�ectively
pruning it away	

EXPERIMENT � � stock market prediction� We predict the DAX �German
stock market index� based on fundamental �experiments �	� and �	�� and technical
�experiment �	�� indicators	 We use strictly layered feedforward nets with sigmoid
units active in �
����� and the following performance measures�

Con�dence� output o � 
 � positive tendency� o � �
 � negative tendency	
Performance� Sum of con�dently� incorrectly predicted DAX changes is subtracted



from sum of con�dently� correctly predicted ones	 The result is divided by the sum
of absolute changes	
EXPERIMENT �	�� Fundamental inputs� �a� German interest rate �	Umlaufsren�
dite
�� �b� industrial production divided by money supply� �c� business sentiments
�	IFO Gesch�aftsklimaindex
�	 �� training examples� �� test examples� quarterly
prediction� con�dence� 
 � �	���	���	�� architecture� ��
�
��	
EXPERIMENT �	�� Fundamental inputs� �a�� �b�� �c� as in exp	 �	�� �d� dividend
rate� �e� foreign orders in manufacturing industry	 ��� training examples� ��� test
examples� monthly prediction� con�dence� 
 � �	���	���	�� architecture� ��
�
��	
EXPERIMENT �	�� Technical inputs� �a� � most recent DAX
changes� �b� DAX�
�c� change of ��
week relative strength index ��RSI
�� �d� di�erence of �� week
statistic
� �e� �MACD
 �di�erence of exponentially weighted � week and �� week
DAX�	 ��� training examples� ��� test examples� weekly predictions� con�dence�

 � �	���	���	�� architecture� ���
�
��	
The following methods are tested� ��� Conventional backprop �BP�� ��� optimal
brain surgeon �OBS ����� ��� weight decay �WD ������ ��� �at minima search �FMS�	

Results� Our method clearly outperforms the other methods	 FMS is up to �� per
cent better than the best competitor �see ��� for details�	

APPENDIX � THEORETICAL JUSTIFICATION

A��� OVERFITTING ERROR

In analogy to ���� and ���� we decompose the generalization error into an �over�t

ting
 error and an �under�tting
 error	 There is no signi�cant under�tting error
�corresponding to Vapnik�s empirical risk� if Eq�w�D�� � Etol	 Some thought is
required� however� to de�ne the �over�tting
 error	 We do this in a novel way	 Since
we do not know the relation D� we cannot know p�
 j D�� the �optimal
 posterior
weight distribution we would obtain by training the net on D �� �sure thing hy

pothesis
�	 But� for theoretical purposes� suppose we did know p�
 j D�	 Then we
could use p�
 j D� to initialize weights before learning the training set D�	 Using
the Kullback
Leibler distance� we measure the information �due to noise� conveyed
by D�� but not by D	 In conjunction with the initialization above� this provides the
conceptual setting for de�ning an over�tting error measure	 But� the initialization
does not really matter� because it does not heavily in�uence the posterior �see ����	

The over�tting error is the Kullback
Leibler distance of the posteriors�
Eo�D�D�� �

R
p�
 j D�� log �p�
 j D���p�
 j D�� d
	 Eo�D�D�� is the expectation

of log �p�
 j D���p�
 j D�� �the expected di�erence of the minimal description of

 with respect to D and D�� after learning D��	 Now we measure the expected
over	tting error relative to Mw �see section �� by computing the expectation
of log �p�
 j D���p�
 j D�� in the range Mw�

Ero�w� � �

�Z
Mw

pMw
�
 j D��Eq�
�D�d
� �Eq�D��Mw�

�
	 ���

Here pMw
�
 j D�� �� p�
 j D���

R
Mw

p�!
 j D��d!
 is the posterior of D� scaled to

obtain a distribution withinMw� and �Eq�D��Mw� ��
R
Mw

pMw
�
 j D��Eq�
�D��d


is the mean error in Mw with respect to D�	



Clearly� we would like to pick w such that Ero�w� is minimized	 Towards this pur

pose� we need two additional prior assumptions� which are actually implicit in most
previous approaches �which make additional stronger assumptions� see section ���
��� 	Closeness assumption
� Every minimum of Eq��� D�� is �close
 to a maximum
of p�
jD� �see formal de�nition in ����	 Intuitively� �closeness
 ensures that D� can
indeed tell us something about D� such that training on D� may indeed reduce the
error on D	 ��� 	Flatness assumption
� The peaks of p�
jD��s maxima are not
sharp	 This MDL
like assumption holds if not all weights have to be known exactly
to model D	 It ensures that there are regions with low error on D	

A�
� HOW TO FLATTEN THE NETWORK OUTPUT

To �nd nets with �at outputs� two conditions will be de�ned to specify B�w�D��
�see section ��	 The �rst condition ensures �atness	 The second condition en

forces �equal �atness
 in all weight space directions	 In both cases� linear ap

proximations will be made �to be justi�ed in ����	 We are looking for weights
�causing tolerable error� that can be perturbed without causing signi�cant out

put changes	 Perturbing the weights w by 
w �with components 
wij�� we obtain
ED�w� 
w� ��

P
k�o

k�w " 
w� � ok�w���� where ok�w� expresses ok�s dependence
on w �in what follows� however� w often will be suppressed for convenience�	 Linear
approximation �justi�ed in ���� gives us �Flatness Condition �
�
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jj
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where � � � de�nes tolerable output changes within a box and is small enough
to allow for linear approximation �it does not appear in B�w�D���s gradient� see
section ��	

Many Mw satisfy �atness condition �	 To select a particular� very �at Mw� the
following �Flatness Condition 

 uses up degrees of freedom left by ����

�i� j� u� v � �
wij��
X
k

�
	ok

	wij
�� � �
wuv�

�
X
k

�
	ok

	wuv
�� 	 ���

Flatness Condition � enforces equal �directed errors


EDij�w� 
wij� �
P

k�o
k�wij " 
wij� � ok�wij��� �

P
k�

�ok

�wij

wij��� where ok�wij�

has the obvious meaning	 It can be shown �see ���� that with given box volume� we
need �atness condition � to minimize the expected description length of the box
center� Flatness condition � in�uences the algorithm as follows� ��� The algorithm
prefers to increase the 
wij�s of weights which currently are not important to gen

erate the target output	 ��� The algorithm enforces equal sensitivity of all output
units with respect to the weights	 Hence� the algorithm tends to group hidden units
according to their relevance for groups of output units	 Flatness condition � is es

sential� �atness condition � by itself corresponds to nothing more but �rst order
derivative reduction �ordinary sensitivity reduction� e	g	 ����	 Linear approximation
is justi�ed by the choice of � in equation ���	

We �rst solve equation ��� for j
wijj � j
wuvj
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��xing u� v for all i� j�	 Then we insert j
wijj into equation ��� �replacing the
second ��
 in ��� by ��
�	 This gives us an equation for the j
wijj �which depend
on w� but this is notationally suppressed��
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The j
wijj approximate the  wij from section �	 Thus� !B�w�D�� �see section ��
can be approximated by B�w�D�� ��

P
i�j � log j
wijj	 This immediately leads to

the algorithm given by equation ���	

How can this approximation be justi�ed# The learning process itself enforces
its validity �see justi	cation in ����� Initially� the conditions above are valid only
in a very small environment of an �initial
 acceptable minimum	 But during search
for new acceptable minima with more associated box volume� the corresponding
environments are enlarged� which implies that the absolute values of the entries in
the Hessian decrease	 It can be shown �see ���� that the algorithm tends to suppress
the following values� ��� unit activations� ��� �rst order activation derivatives� ���
the sum of all contributions of an arbitary unit activation to the net output	 Since
weights� inputs� activation functions� and their �rst and second order derivatives are
bounded� it can be shown �see ���� that the entries in the Hessian decrease where
the corresponding j
wijj increase	

A��� RELATION TO HINTON AND VAN CAMP

Hinton and van Camp ��� minimize the sum of two terms� the �rst is conventional
error plus variance� the other is the distance

R
p�
 j D�� log �p�
 j D���p�
�� d


between posterior p�
 j D�� and prior p�
�	 The problem is to choose a �good

prior	 In contrast to their approach� our approach does not require a �good
 prior
given in advance	 Furthermore� Hinton and van Camp have to compute variances
of weights and units� which �in general� cannot be done using linear approximation	
Intuitively speaking� their weight variances are related to our  wij	 Our approach�
however� does justify linear approximation	
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