
Meta-Learning with Backpropagation

A. Steven Younger Sepp Hochreiter Peter R. Conwell

University of Colorado University of Colorado Westminster College
Computer Science Computer Science Physics Department

Boulder, CO 80309 USA Boulder, CO 80309 USA
syounger 0 boulder.net hochreit @cs.colorado.edu conwellp @ xmission.com

Salt Lake City, UT 84105 USA

Abstract

This paper introduces gradient descent methods
applied to meta-leaming (leaming how to leam)
in Neural Networks. Meta-leaning has been of
interest in the machine leaming field for decades
because of its appealing applications to intelli-
gent agents, non-stationary time series, autono-
mous robots, and improved leaming algorithms.
Many previous neural network-based ap-
proaches toward meta-leaming have been based
on evolutionary methods. We show how to use
gradient descent for meta-leaming in recurrent
neural networks. Based on previous work on
Fixed- Weight Leaming Neural Networks, we
hypothesize that any recurrent network topology
and its corresponding leaming algorithm(s) is a
potential meta-leaming system. We tested sev-
eral recurrent neural network topologies and
their corresponding forms of Backpropagation
for their ability to meta-leam. One of our sys-
tems, based on the Long Short-Term Memory
neural network developed a leaming algorithm
that could leam any two-dimensional quadratic
function (from a set of such functions} after only
30 training examples.

1 Introduction

This paper reports on our work utilizing gradient
descent methods (i.e. Backpropagation) to search
out and find learning algorithms tailored to spe-
cific learning tasks (meta-learning).

After a brief review previous meta-learning sys-
tems, we will discuss Fixed-Weight Learning
Neural Networks, which motivates our method.
We will also review the Long-Short Term Mem-
ory Network. Section 3 describes our meta-
learning evaluation experimental set-up. In Sec-

0-7803-7044-9/01/$10.00 02001 IEEE 200 1

tion 4, we summarize our results. Finally, we
will discuss some of the questions raised by our
work.

2 Previous Work

In meta-learning, there are two learning proc-
esses proceeding simultaneously. There is a su-
pervisory system, which is attempting to learn a
good learning algorithm for a set of problems
with similar characteristics. There is also a sub-
ordinate learning algorithm, which is attempting
to learn a specific problem. Periodically, the su-
pervisor alters the subordinate algorithm slightly
to improve its learning performance. Mostly,
these two algorithms must perform the same
task: they must leverage the regularities of their
respective problems in order to efficiently solve
them. However, there are differences in the time
scale and scope of their problems. The supervi-
sory process has a broader scope. It must ignore
the details unique to .specific problems, and look
for symmetries over a long time scale, while the
opposite is true for a subordinate learning
scheme.

2.1 Review of Meta-Learning
Several researchers have used meta-learning
techniques to derive or improve learning algo-
rithms [1,2,3]. For example, Runarsson and
Jonsson in [2] used a genetic algorithm to evolve
neural networks that implemented sophisticated
learning rules. Some conclusions of the study
were that the evolved networks are fast learners;
and the derived learning rule is biased, i.e. it is
‘tuned’ to solve a given problem class fast.

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on May 18,2010 at 19:07:29 UTC from IEEE Xplore. Restrictions apply.

http://boulder.net
mailto:cs.colorado.edu
http://xmission.com

The self-modifying neural networks of Schmid-
huber et al. [3], which run their own learning
algorithms, are similar to our meta-learning
method. Unlike our networks, their networks
required special units to read and modify their
synaptic weights during learning.

2.2 Fixed-Weight Learning Neural Networks
For lalrge networks, genetic-based meta-learning
can become intractable due to the number of
computations required. We used Fixed-Weight
Learning Neural Networks (FWNNs) [4-71 to
motivate how to use of gradient descent to speed
up meta-learning.

FWNNs are recurrent networks that have a learn-
ing algorithm encoded or wired into their synap-
tic weights. Recurrent signal loops store infor-
mation about the particular mapping being
learned by the network. Thus, they can learn
without changing any of their synaptic weights.

Figure 1 illustrates the conceptual steps involved
in converting a single synapse neural network
and its attendant learning algorithm into an
equivalent FWNN. (This example ignores certain
timing issues that change the details of the con-
version, but not the overall concept.).

We will use the term embedded leaming algo-
rithm to refer to a learning algorithm encoded in
synaptic weights.

FWNNs move the adaptation associated with
learning a particular mapping to the dynamics of
the networks. The adaptation is manifest in the
changing signals in the recurrent loops. On the
other hand, the weights in a FWNN network
represent the learning algorithm. Since the net-
works output error is continuous with respect to
changes in the synaptic weights, gradient decent
applied to these weights is meta learning.

The new idea we bring with this paper is that any
recurrent network can be considered a potential
fixed weight learning network. In other words, a
recurrent network with random weights is simply
a very inefficient learning machine. By applying
standard gradient decent to these synaptic
weights we improve the embedded learning algo-
rithm associated with these weights. Further-
more we can perform meta-learning without any
modifications to the training algorithm(s) nor-
mally used for that network. A fully recurrent
network trained with the Williams and Zipser
algorithm [8] can, in principle, be used for meta-

learning. However, the training set must include
exemplars from many different types of func-
tional mappings.

We have found certain recurrent architectures to
be better than others at meta learning. One archi-
tecture in particular is the Long Short-Term
Memory (LSTM).

2.3 The Long Short-Term Memory Network
The LSTM Network [9] is a type of recurrent
network that was designed to overcome the prob-
lems that appear when trying to learn to store
information long time intervals. In addition to
standard neurons, the LSTM has special memory
cells, shown in Figure 3. The memory cells con-
sist of three main components: a self-recurrent
linear neuron, input and output gate units con-
trolled by gatekeeper neurons, and a non-linear
output squash unit. A LSTM can have either one
or two hidden layers. Neurons within each layer
are fully interconnected. A special LSTM Trun-
cated Backpropagation is used to train the net-
work. We included the LSTM in our study be-
cause Shitoot [lo] noticed strong similarities
between the LSTM and the FWNNs reported in
VI.

3 The Key to Meta-Learning: Preparing the
Meta-Training Data Set

The selection of the training data is what deter-
mines the difference between regular (non meta-)
learning and meta-learning. Regular learning
uses several examples of inputs and the associ-
ated target outputs from a single functional map-
ping. For meta-learning, we need many training
pairs from many different functional mappings
from a given set of such mappings. We will illus-
trate by giving a specific example: the set or
class of all Boolean mappings with two argu-
ments and one result. This set of sixteen func-
tions includes the standard AND, OR, and XOR.
Our training corpus consisted of 100 instances
the Boolean maps, selected in random order. For
each instance of a Boolean map, there was a se-
quence of 256 randomly generated training vec-
tors. During each training cycle, we presented
one of these vectors to the network.

A training epoch consisted of a complete pass
through all 25,600 vectors. Each training vector
also contains the target output for the inputs of
the current cycle. However, this value was only
used to maintain a running tally of the mean

2002

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on May 18,2010 at 19:07:29 UTC from IEEE Xplore. Restrictions apply.

squared error. The tally was used by the supervi-
sory program for the meta-learning.

The FWN”s embedded learning algorithm
needed a supplementary input so it can learn the
presented mapping. We could have used the er-
ror of the network’s output associated with the
previous cycle’s input vector. Another possible
supplementary input was the target (i.e. the func-
tion’s result) associated with the previous cycle’s
input vector. We choose the latter approach.
Thus, each training vector had three input values:
the two Boolean arguments, and the target for the
previous training cycle.

4 Experimental Results

In [l 13 we detailed results of our experiments
with gradient-based meta-learning. We evaluated
several different recurrent network topologies
(with their corresponding versions of Back-
propagation) for their meta-learning ability. Af-
ter meta-training, we evaluated the resulting
learning networks on separately generated test
data.

We tested the potential meta-learning topologies
and algorithms on three sets of functional map-
pings. The first is the set of Boolean mappings
described above. The second was a set of semi-
linear function mappings given by the expression
y=f . (l+tanh(w, .x, +w2 ‘x, +w,)), where

x,, w, E [-1,1]. The x’s are the network inputs,
they is the target function value. The w’s param-
eterize or specify the particular mapping. This is
the set of all mappings that a single neuron with
one bias and two inputs can learn exactly (with
weights in the range [-1,+1]).

The third set of mappings was the set of two-
parameter quadratic functions given by:
y = ax: + bx: + cx,x, + dx, +ex , + f , where
a, ..., f E [-1,1] parameterize the particular
mapping. The x’s were as above, and the y was
scaled to the interval [0.2,0.8] before being used
as the target value.

The only fully successful topology in meta-
learning was the LSTM neural network and its
associated LSTM Backpropagation. The LSTM
meta-learning could successfully derive a learn-
ing network for all mapping sets attempted. We
used two versions for the LSTM, the standard
three-layer version, and a modified four-layer

version. The latter was required to derive a learn-
ing network for the quadratic problem set. Table
1 summarizes the LSTM results. The first col-
umn shows the structure of the hidden layers.
The first LSTM had one hidden layer with six
memory cells and six standard neurons. The sec-
ond meta-learning network had 12 memory cells
and 6 regular neurons in its first hidden layer. It
also had a second hidden layer with 40 standard
neurons. The second column is the set of map-
pings that were to be meta-learned. The third
column is the number of examples for each map-
ping’s presentation sequence. The fourth column
is the number of epochs that the meta-learning
program required to derive the learning algo-
rithm. The fifth column is the Mean Squared
Error on test data after meta-training has oc-
curred. The final column is the average number
of steps that the derived learning algorithm re-
quired to converge.

Figure 3 shows a plot of absolute error versus
time, after meta-learning was successful. The
plot is for the Boolean set of functional map-
pings. The peaks at 512, 768, and 1024 indicate
large error when a new mapping begins. Note
that the error rapidly reduced after each change,
indicating that the learning network performed
successfully.

Note that the resulting learning networks were
rapid learners. The Boolean learning network,
for instance, took only about ten steps to learn a
new mapping - including XOR and NOT XOR.

The most important aspect of our work was that
effective learning networks were automatically
derived by the LSTM meta-training, not the spe-
cific learning networks that were generated.

5 Discussion

Why could the LSTM -meta-learn while other
architectures could not? We believe that there
were two necessary features. We showed in [111
that the recurrent loop-back synaptic weights
must be 1.0 and the neuron must have a linear
squashing function into store information long-
term. (Actually, the constraint is slightly less
restrictive than this.) We also showed this ex-
perimentally in [7]. The second necessary feature
was the input gatekeeper units, which control the
input to the loop cell. By learning when to allow
and (perhaps more importantly) when to disallow
new information into the memory cell, the

2003

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on May 18,2010 at 19:07:29 UTC from IEEE Xplore. Restrictions apply.

LSTM can store information for the longer peri-
ods of time needed to do meta-learning.

The ll units could be replaced by an equivalent
(standard neuron) network at the expense of
more complexity.

How did the resultant learning networks work?
Were they similar to known methods? It is very
difficult to take apart a neural network (espe-
cially a recurrent network) and extract the rules
that are encoded in its synaptic weights. How-
ever, examination of the output of the memory
cells revealed that the Boolean problem learner
encoded the sixteen possible functions by a four-
neuron binary encoding scheme. Obviously, this
way of enumerating the mappings would only
work for small sets of mappings, each with a
small number of possible results (in this case 0
or 1). The meta-learning correctly extracted these
properties from the meta-training data set. This is
similar to the way a human being may try to
solve the problem.

Meta-learning on the set of Semi-linear functions
resulted in a learning network that stored three
continuous values in the memory cells. This re-
flects the continuous, three-parameter nature of
the set of mappings.

The Quadratic problem learner also generated
continuous values in its memory cells. Another
signal it generated was approximately inversely
proportional to the cycle step number within a
sequence. We believe that the network used this
signal to increase the influence of the errors near
the beginning of the sequence, speeding up
learning.

References

[13 David J. Chalmers, “The Evolution of Learn-
ing: Experiments in Genetic Connectionism” in
Proceedings of the I990 Connectionist Models.
Summer, School. Editors D.S. Touretsky, J.L.
Elman, T.J. Sejnowski & G.E. Hinton, Morgan
Kauffmann; San Mateo, CA

[2] Thomas Philip Runarsson and Magnus Thor
Jonsson. “Evolution and Design of Distributed
Learning Rules” 2000 IEEE Symposium of Com-

binations of Evolutionary Computing and Neural
Networks. San Antonio, Texas (2000) p. 59

[3] J. Schmidhuber. “A neural network that em-
beds its own meta-levels.” In Proc. Of the Inter-
national Conference on Neural Networks ’93,
San Fransisco, IEEE 1993

[4] N. E. Cotter and P. R. Conwell. “Fixed-
Weight Networks Can Learn.” In Intemational
Joint Conference on Neural Networks held in
San Diego 1990, IEEE, New York, 1990, pp. II-
553- 559.

[5] N. E. Cotter and P. R. Conwell. “Learning
Algorithms and Fixed Dynamics.” In Intema-
tional Joint Conference on Neural Networks held
in Seattle 1991 by IEEE. New York: IEEE 1991,
I- 799- 804.

[6] A. Steven Younger, Learning in Fixed-
Weight Recurrent Neural Networks. Ph.D. Dis-
sertation, University of Utah 1996

[7] A. Steven Younger, P. R. Conwell, and N. E.
Cotter. “Fixed-Weight On-Line Learning.”
IEEE Transactions on Neural Networks. Vol.10
No. 2, March 1999 pp. 272-283

[8] R. J. Williams and D. Zisper, “A learning
algorithm for continually running fully recurrent
neural networks,” Univ of California, San Diego,
La Jolla, CA. Tech Report TR-8805.

[9] Sepp Hochreiter and J. Schmidhuber, “Long
Short-Term Memory.” Neural Computation 9(8)
pp. 1735-1780,1997

LSTM source code can be obtained by:
ftp ftp.cs.colorado.edu
cd users/hochreit/software
get hochreiter.lstm.tar.gz

[101 Yashwant Shitoot, Private Communication,
1996

[l l] Sepp Hochreiter, A. Steven Younger and
Peter R. Conwell. “Learning To Learn Using
Gradient Descent.” to appear in Proceedings
of the Intemationul Conference on Artificial
Neural Networks, Springer Verlag 2001

2004

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on May 18,2010 at 19:07:29 UTC from IEEE Xplore. Restrictions apply.

http://ftp.cs.colorado.edu

X

6

a
-b

x o - Y
W

'Y

Figure 1 : Construction of an equivalent FW" for a single synapse and its attendant learning algorithm Clockwise
from the upper left: (1) Conventional network with learning algorithm newW = f (x , y . 6, oZdW) . (2) Universal ap-
proximation allows us to replace the learning algorithm with an equivalent recurrent network. Note that recurrence is
necessary to store the oldW information dynamically in signal loops. (3) Replace the synapse with a Il unit, removing
the requirement to change the synaptic weight. (4) If required, replace the ll unit with an equivalent non-Il network.

I 1.0 I
squash neuron

output gate

memory loop

gatekeeper neuron

Figure 2: LSTM memory cell. Key features are the input and output gates controlled by gatekeeper neurons, the linear
memory loop neuron and the output squash neuron. The gatekeeper neurons learn when to allow data in and out of the
memory loop neuron.

2005

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on May 18,2010 at 19:07:29 UTC from IEEE Xplore. Restrictions apply.

Table 1: Performances of Automatically Derived LSTM-Based Learning Networks

1

0.8

0 . 6

0 . 4

0.2

n

Hidden Neu- Problem Set Examples per Epochs MSEt Cycles to
rons Mapping Learn
HI: 6 Memory Boolean 256 800 0.0058 10

- 1

-

-

-

+ 6 Standard -
Semi-Linear 64 10000 0.0008 10
Semi-Linear 1000 5000 0.0025 50

HI: 12 Memory Quadratic 100 25000 0.00068 35
+ 6 Standard
H2:40 Standard

i o 0 5 0 0 6 0 0 7 0 0 800 900 1 0 0 0 1 1 0 0

Figure 3: Absolute error versus time, after meta-leaming was successful. The plot is for the Boolean set of functional
mappings. The peaks at 5 12,768, and 1024 indicate a large error when a new mapping begins. The rapid reduction of
the error after the peaks shows that the net mapping was learned quickly. Before meta-learning, this entire plot would
have consisted of errors the size of the peaks.

2006

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY. Downloaded on May 18,2010 at 19:07:29 UTC from IEEE Xplore. Restrictions apply.

