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1 Control of Type I Error Rate by I/NI
Calls

In the following we show that for permutation invariant test
statistics and for the ¢-test statistic 7', the I/NI call filter ap-
plied to null hypotheses is independent of the statistic. The
result is given in Theorem [I] at the end of this section. The
theorem guarantees type I error rate control if first filtering
by I/NI calls, then using these statistics, and finally applying
correction for multiple testing.

To proof this theorem, first we need some results on summa-
rization with Robust Multi-array Average (RMA) for Gaussian
noise and for correlated probes in the probe sets. These results
are given in the following lemmas.

1.1 RMA Summarization of Gaussian Probes

Robust Multi-array Average (RMA) summarizes a probe set
by median polish. After removing sample median (the first
RMA step), the sample effects are small and RMA basically
computes the median of the probe set.

We assume a probe set with (2m + 1) probes. According
to (Chu| (1955), for (2m + 1) samples drawn from a normal
distribution with density f(z) ~ N (&, o) and cumulative dis-
tribution function F'(z), the distribution of samples’ median
is
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According to (Chul (1955), p(z) is asymptotically normal
which is is formulated in following lemma.

Lemma 1 For 2m + 1 samples randomly drawn according to
a normal distribution f(x) ~ N (£, 0), the sample median is
asymptotically normal distributed with mean £ and variance
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Proof: This lemma is shown in|Chu! (1955).
Proof complete.

In [Chul (1955)) it is stated that the distribution of the me-
dian “tends ’rapidly’ to normality.” Using the bounds in |Chu
(1955)), for a probe set of 16 probes (a standard Affymetrix
probe set), the factor deviating from a normal distribution is
between 0.9858317 and 1.023438.

1.2 RMA Summarization of Correlated Gaus-
sian Probes

Now we consider summarization in the case where the probes
of a probe set are correlated and driven by a hidden signal
stemming from targeting the same mRNA. To introduce cor-
related probes, we assume a signal ;. for sample k, where
& is the intensity of all probes. The probes of a probe set
are noisy with Gaussian noise N'(0, o), therefore the median

of the probes follows for fixed £ the Gaussian distribution
N (&, 0m). The signal &, is drawn from a Gaussian signal
distribution N (us, os), where (us,os) determine the signal
strength. The probes are now correlated across samples where
(s, 0s) determines the strength of correlation.

Alternatively, we could have introduced correlated probes
by a linear scaled signal for each sample which is noisy ob-
served in each probe. This is equivalent to above approach.
To see this, let a multiplicative factor pj, which scales the
reference signal p, follow a Gaussian N (g, or). The new
mean values &, follow a Gaussian N (i i, 12 o) which is
equivalent to above approach to introduce correlation by set-
ting f1s = p pr and o5 = 1% oy,

Because the signal distribution determines the mean of
the median distribution, the distribution of the median is
the convolution of two Gaussian distributions N (s, 05) and

N0, omm).

Lemma 2 [f the correlation signal of probes of a probe set is
drawn from a Gaussian distribution N (us, o) and the noise
of the probes is N'(0, o), then the median distribution is

N(ps,0z) , 3)
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Proof: The lemma follows from Lemma [I] which states that
the distribution of the median is N(£,, o) for fixed &. If &,
is drawn according to A (115, 05) then the median distribution
is obtained by the convolution of (0, 0y,) and N (ps, o).
The distribution given in the lemma is the result of this convo-
lution.

Proof complete.

Introducing correlations in other way would not change the
results but the convolution for non-Gaussian signal distribu-
tions might be more complicated.

1.3 Independence of I/NI Filter and Test Statis-
tic for Null Hypotheses

The Informative/NonInformative (I/NI, Talloen et al.l [2007)
call tries to access the noise part o2 of the overall variance by
var(z | «). Thus, the amount of signal o in the probe set is
estimated.

More specifically, according to(Talloen et al.|(2007) the I/NI
call is
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where —5 is the signal-to-noise ratio.



Probe sets containing a signal and probe sets not containing
a signal, are both normal distributed. However, probes sets
with a signal have larger variance because the signal variance
0 is added to the variance of the median according to Lemma
2l

We use the notation in |[Bourgon et al.| (2010) and define
permutation invariance for sample size n.

Definition 1 A rest statistic UL is permutation invariant if
for fixed Y; € R™ i € Ho, and 11 drawn uniformly from
Sy, (the set of all permutations on n elements), the distribu-
tion of the test statistic U Hy; (Y;) is equal to the distribution of

UM (I1(Y;)).

Now we can formulate our main theorem that for permu-
tation invariant test statistics and for the ¢-test statistic 1°, the
I/NI call filter applied to null hypotheses is independent of the
statistic. The theorem guarantees type I error rate control if
applying correction for multiple testing.

Theorem 1 For permutation invariant test statistics like the
Wilcoxon rank sum statistic and for t-test statistic T, the I/NI
call filter applied to null hypotheses is independent of the
statistic.

Proof: First we note that the I/NI call for one probe set does
not dependent on another probe set as the models are indepen-
dently selected for each probe set.

A) Permutation invariant test statistics:

For permutation invariant test statistics the statement follows
directly from the permutation invariance of the I/NI call fil-
ter. The I/NI call is permutation invariant because the I/NI call
model selection objective, the a posteriori of the parameters,
is independent of the permutation of the samples. Further, the
implementation of the algorithm uses only the data covariance
matrix Hochreiter ef al.| (2006)) which is independent of per-
mutations of the samples.

All assumptions on the filter of the the proposition
“Marginal Independence: Permutation Invariance” in [Bour-
gon et al| (2010) are fulfilled. The independence between
the I/NI call filter and permutation invariant test statistics is
shown.

B) t-test statistic T':

As pointed out by Bourgon et al.| (2010) in their supplemen-
tary, the test statistics 1" for the t¢-test is invariant to scaling
and shifting of the mean. If the noise level o is equal for
each probe set, then I/NI call is equivalent to variance filter-
ing because only the signal variance o determines the overall
variance. The more interesting case is where signal and noise
differ at each probe set, thus variance filtering and I/NI calls
yield different results.

For probe set ¢ the signal is drawn from a Gaussian distri-
bution N (ps;, 0s;). According to Lemma [2] I the RMA sum-
marized data follows the Gaussian N (pg;, 04;), where 04; =
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the noise level (pg;, 0s;,0;) is drawn from some distribution
P(/Jsiya'siyo'i)'

The data Y; can be generated by first drawing n samples
from a standard normal distribution giving X; € R", where
Px, = N(0,1I,) with 0 as the n-dimensional zero vector

and I, as the n-dimensional identity matrix. Then X is
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og + 2(271”:_1) and shifted component-
wise by ug;. The shifting and scaling values are drawn from

(11s1,051,0;) Which is independent from Py .

For the null hypothesis ¢ € Hg, we assume that both dis-
tributions Px, and P are independent of the condi-
tions C.

For showing the independence of filtering U and test statis-
tic U1, we are interested in the probability of the event {U Z-I €
A, UZ-H € B}. Here we define UZ-I(Y) = var(z | )(Y') with
A={u|u<05}and U (Y)=T(Y,C) for t-test statis-
tic T', conditions C, and B = {u | u > 6}. Let 6 4 and 03 be
indicator functions for A and B.

We consider a probe set Y; for which ¢ € Hg (a true null
hypothesis).
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and 1 is the vector of ones with length n. The equality of the
3rd/4th line to the 5th line is obtained by the shift and scale
invariance of U/ and the fact that U! depends only on og;
and o;.

Proof complete.

Note, that for equal noise level o on each probe set, the
I/NI call is equivalent to variance filtering. Also for a low
noise level relative to the signal, I/NI call is similar to variance
filtering.
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