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1 Control of Type I Error Rate by I/NI
Calls

In the following we show that for permutation invariant test
statistics and for the t-test statistic T , the I/NI call filter ap-
plied to null hypotheses is independent of the statistic. The
result is given in Theorem 1 at the end of this section. The
theorem guarantees type I error rate control if first filtering
by I/NI calls, then using these statistics, and finally applying
correction for multiple testing.

To proof this theorem, first we need some results on summa-
rization with Robust Multi-array Average (RMA) for Gaussian
noise and for correlated probes in the probe sets. These results
are given in the following lemmas.

1.1 RMA Summarization of Gaussian Probes
Robust Multi-array Average (RMA) summarizes a probe set
by median polish. After removing sample median (the first
RMA step), the sample effects are small and RMA basically
computes the median of the probe set.

We assume a probe set with (2m + 1) probes. According
to Chu (1955), for (2m + 1) samples drawn from a normal
distribution with density f(x) ∼ N (ξ, σ) and cumulative dis-
tribution function F (x), the distribution of samples’ median
is

p(x) =
(2m+ 1)!

m! m!
(F (x) (1− F (x))m f(x) . (1)

According to Chu (1955), p(x) is asymptotically normal
which is is formulated in following lemma.

Lemma 1 For 2m+ 1 samples randomly drawn according to
a normal distribution f(x) ∼ N (ξ, σ), the sample median is
asymptotically normal distributed with mean ξ and variance

σ2m =
1

4 f2(ξ) (2m+ 1)
. (2)

Proof: This lemma is shown in Chu (1955).
Proof complete.

In Chu (1955) it is stated that the distribution of the me-
dian “tends ’rapidly’ to normality.” Using the bounds in Chu
(1955), for a probe set of 16 probes (a standard Affymetrix
probe set), the factor deviating from a normal distribution is
between 0.9858317 and 1.023438.

1.2 RMA Summarization of Correlated Gaus-
sian Probes

Now we consider summarization in the case where the probes
of a probe set are correlated and driven by a hidden signal
stemming from targeting the same mRNA. To introduce cor-
related probes, we assume a signal ξk for sample k, where
ξk is the intensity of all probes. The probes of a probe set
are noisy with Gaussian noise N (0, σ), therefore the median

of the probes follows for fixed ξk the Gaussian distribution
N (ξk, σm). The signal ξk is drawn from a Gaussian signal
distribution N (µs, σs), where (µs, σs) determine the signal
strength. The probes are now correlated across samples where
(µs, σs) determines the strength of correlation.

Alternatively, we could have introduced correlated probes
by a linear scaled signal for each sample which is noisy ob-
served in each probe. This is equivalent to above approach.
To see this, let a multiplicative factor ρk, which scales the
reference signal µ, follow a Gaussian N (µr, σr). The new
mean values ξk follow a Gaussian N (µ µr, µ

2 σr) which is
equivalent to above approach to introduce correlation by set-
ting µs = µ µr and σs = µ2 σr.

Because the signal distribution determines the mean of
the median distribution, the distribution of the median is
the convolution of two Gaussian distributions N (µs, σs) and
N (0, σm).

Lemma 2 If the correlation signal of probes of a probe set is
drawn from a Gaussian distribution N (µs, σs) and the noise
of the probes is N (0, σ), then the median distribution is

N (µs, σx) , (3)

where

σ2x = σ2s + σ2m = σ2s +
1

4 f2N (0,σ)
(ξ) (2m+ 1)

(4)

= σ2s +
π σ2

2 (2m+ 1)
,

Proof: The lemma follows from Lemma 1 which states that
the distribution of the median isN (ξk, σm) for fixed ξk. If ξk
is drawn according to N (µs, σs) then the median distribution
is obtained by the convolution of N (0, σm) and N (µs, σs).
The distribution given in the lemma is the result of this convo-
lution.
Proof complete.

Introducing correlations in other way would not change the
results but the convolution for non-Gaussian signal distribu-
tions might be more complicated.

1.3 Independence of I/NI Filter and Test Statis-
tic for Null Hypotheses

The Informative/NonInformative (I/NI, Talloen et al., 2007)
call tries to access the noise part σ2 of the overall variance by
var(z | x). Thus, the amount of signal σs in the probe set is
estimated.

More specifically, according to Talloen et al. (2007) the I/NI
call is

var(z | x) =

(
(2m+ 1) σ2s

σ2
+ 1

)−1
< 0.5 , (5)

where σ2
s
σ2 is the signal-to-noise ratio.
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Probe sets containing a signal and probe sets not containing
a signal, are both normal distributed. However, probes sets
with a signal have larger variance because the signal variance
σs is added to the variance of the median according to Lemma
2.

We use the notation in Bourgon et al. (2010) and define
permutation invariance for sample size n.

Definition 1 A test statistic UII is permutation invariant if
for fixed Yi ∈ Rn, i ∈ H0, and Π drawn uniformly from
Sn (the set of all permutations on n elements), the distribu-
tion of the test statistic UII(Yi) is equal to the distribution of
UII(Π(Yi)).

Now we can formulate our main theorem that for permu-
tation invariant test statistics and for the t-test statistic T , the
I/NI call filter applied to null hypotheses is independent of the
statistic. The theorem guarantees type I error rate control if
applying correction for multiple testing.

Theorem 1 For permutation invariant test statistics like the
Wilcoxon rank sum statistic and for t-test statistic T , the I/NI
call filter applied to null hypotheses is independent of the
statistic.

Proof: First we note that the I/NI call for one probe set does
not dependent on another probe set as the models are indepen-
dently selected for each probe set.

A) Permutation invariant test statistics:
For permutation invariant test statistics the statement follows
directly from the permutation invariance of the I/NI call fil-
ter. The I/NI call is permutation invariant because the I/NI call
model selection objective, the a posteriori of the parameters,
is independent of the permutation of the samples. Further, the
implementation of the algorithm uses only the data covariance
matrix Hochreiter et al. (2006) which is independent of per-
mutations of the samples.

All assumptions on the filter of the the proposition
“Marginal Independence: Permutation Invariance” in Bour-
gon et al. (2010) are fulfilled. The independence between
the I/NI call filter and permutation invariant test statistics is
shown.

B) t-test statistic T :
As pointed out by Bourgon et al. (2010) in their supplemen-
tary, the test statistics T for the t-test is invariant to scaling
and shifting of the mean. If the noise level σ is equal for
each probe set, then I/NI call is equivalent to variance filter-
ing because only the signal variance σs determines the overall
variance. The more interesting case is where signal and noise
differ at each probe set, thus variance filtering and I/NI calls
yield different results.

For probe set i the signal is drawn from a Gaussian distri-
bution N (µsi, σsi). According to Lemma 2 the RMA sum-
marized data follows the Gaussian N (µsi, σxi), where σxi =√
σ2si +

π σ2
i

2 (2m+1)
). Let us assume that the signal strength and

the noise level (µsi, σsi, σi) is drawn from some distribution
P(µsi,σsi,σi).

The data Yi can be generated by first drawing n samples
from a standard normal distribution giving Xi ∈ Rn, where
PXi

≡ N (0, In) with 0 as the n-dimensional zero vector

and In as the n-dimensional identity matrix. Then Xi is

scaled by σxi =

√
σ2si +

π σ2
i

2 (2m+1)
and shifted component-

wise by µsi. The shifting and scaling values are drawn from
P(µsi,σsi,σi) which is independent from PXi

.
For the null hypothesis i ∈ H0, we assume that both dis-

tributions PXi
and P(µsi,σsi,σi) are independent of the condi-

tions C.
For showing the independence of filteringUI and test statis-

ticUII , we are interested in the probability of the event {UIi ∈
A, UIIi ∈ B}. Here we define UIi (Y ) = var(z | x)(Y ) with
A = {u | u < 0.5} and UIIi (Y ) = T (Y ,C) for t-test statis-
tic T , conditions C, and B = {u | u > θ}. Let δA and δB be
indicator functions for A and B.

We consider a probe set Yi for which i ∈ H0 (a true null
hypothesis).

P
(
UIi ∈ A, U

II
i ∈ B

)
(6)

=

∫
δA
(
UI(Yi)

)
δB
(
UII(Yi)

)
dPYi

=

∫ ∫
δA
(
UI(µsi 1 + Xi σxi)

)
δB
(
UII(µsi 1 + Xi σxi)

)
dPXi

dP(µsi,σsi,σi)

=

∫ ∫
δA
(
UI(σsi, σi

)
δB
(
UII(Xi

)
dPXi

dP(µsi,σsi,σi)

=

∫
δA
(
UI(σsi, σi

)
dP(µsi,σsi,σi)

∫
δB
(
UII(Xi)

)
dPXi

= P
(
UIi ∈ A

)
P
(
UIIi ∈ B

)
,

where

σxi =

√
σ2si +

π σ2i
2 (2m+ 1)

) (7)

and 1 is the vector of ones with length n. The equality of the
3rd/4th line to the 5th line is obtained by the shift and scale
invariance of UII and the fact that UI depends only on σsi
and σi.
Proof complete.

Note, that for equal noise level σ on each probe set, the
I/NI call is equivalent to variance filtering. Also for a low
noise level relative to the signal, I/NI call is similar to variance
filtering.
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