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1 Introduction

This package hapFabia provides software for the method HapFABIA which identifies rare and
short haplotype clusters in large sequencing data with a focus on rare variants.

Individuals that inherited a particular DNA segment from the same founder constitute a hap-
lotype cluster by sharing minor alleles of variants that tag this segment. Knowledge of haplotype
clusters are relevant for genetic and genomic studies and for population genetics where they shed
light on the evolutionary history of humans.

Figure 1: The DNA segment marked in yellow descended from a founder to different individuals
which constitute a haplotype cluster by possessing the DNA segment.

Rare haplotype clusters are identified by biclustering that is clustering individuals only on a
subset of single nucleotide variants (SNVs), the tagSNVs (these SNVs tag the haplotype cluster).
Biclustering combines linkage disequilibrium (LD) information across individuals via correlations
of SNVs and identity by descent (IBD) information along the chromosome via contiguous iden-
tical alleles. The LD information enters HapFABIA through FABIA implemented in the package
Fabio which detects correlations of multiple SNVs by a factor analysis model. The IBD infor-
mation enters HapFABIA through identification of haplotype clusters as local agglomerations of
correlated SNVs.
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Figure 2: Different approaches to detect haplotype clusters. The y-axis enumerates individuals and
the x-axis SNVs. Yellow and violet bars indicate major and minor alleles, respectively. Haplotype
cluster segments are marked in gold. Panel A: Linkage disequilibrium (LD) is computed for two
SNVs across all samples. Identity by descent (IBD) is detected for two individuals for a long
haplotype region. Panel B: A haplotype block is depicted as a region of increased LD comprising
different haplotypes. Biclustering clusters individuals together that have the same founder DNA
segment indicated by identical minor alleles of tagSNVs.

Fig. 2 shows in panel A linkage disequilibrium (LD) and identity by descent (IBD) and in panel
B a haplotype block and a bicluster. Individuals that belong to a haplotype cluster are similar to
each other because they share the same minor alleles in an inherited founder DNA segment. This
similarity define a bicluster according to the FABIA model Hochreiter et al. (2010). Consequently,
a haplotype cluster constitutes a bicluster to which SNVs belong if they tag the haplotype cluster
and to which individuals belong if they possess the founder DNA segment (see the bicluster in
panel B of Fig. 2).

The multiplicative biclusters of FABIA are able to represent homozygous regions that is
two occurrences of a haplotype in one diploid individual via their factors. Overlapping haplo-
type clusters in one diploid individual are represented through the additivity of biclusters in the
FABIA model. Examples of haplotype clusters found by hapFabia in chromosome 1 data from the
1000Genomes project are given in Fig. 3 and Fig. 4.
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chr: 1  ||  pos: 8,698,269  ||  length: 57kbp  ||  #SNPs: 126  ||  #Samples: 30

8,669,911 8,677,434 8,685,034 8,692,634 8,700,234 8,707,834 8,715,434 8,723,034

model L

NA19711_ASW

NA19474_LWK

NA19457_LWK

NA19448_LWK

NA19435_LWK

NA19435_LWK

NA19431_LWK

NA19399_LWK

NA19390_LWK

NA19382_LWK

NA19381_LWK

NA19377_LWK

NA19360_LWK

NA19311_LWK

NA19223_YRI

NA19200_YRI

NA19190_YRI

NA19189_YRI

NA19175_YRI

NA19121_YRI

NA19116_YRI

NA19107_YRI

NA19095_YRI

NA18917_YRI

NA18916_YRI

NA18873_YRI

NA18522_YRI

NA18522_YRI

NA18511_YRI

NA18501_YRI

Figure 3: Example of a haplotype cluster in chromosome 1 found in the 1000Genomes project
data. The y-axis gives the chromosomes and the x-axis consecutive SNVs/Indels/SVs. Yellow
indicates major alleles, violet minor alleles of tagSNVs, and blue minor alleles of other SNVs.
“model L” indicates tagSNVs identified by hapFabia in violet. A probable phasing error can be
seen in line 3 and 4 at individual NA18522. Another phasing error can be seen in the last but four
and the last but five line at individual NA19435.

chr: 1  ||  pos: 51,721,665  ||  length: 52kbp  ||  #SNPs: 160  ||  #Samples: 48

51,695,899 51,702,729 51,709,629 51,716,529 51,723,429 51,730,329 51,737,229 51,744,129 51,747,432

model L

NA20346_ASW
NA20344_ASW
NA20339_ASW
NA20336_ASW
NA20127_ASW
NA19922_ASW
NA19914_ASW
NA19900_ASW
NA19468_LWK
NA19449_LWK
NA19444_LWK
NA19437_LWK
NA19430_LWK
NA19397_LWK
NA19396_LWK
NA19384_LWK
NA19384_LWK
NA19371_LWK
NA19371_LWK
NA19355_LWK
NA19350_LWK
NA19346_LWK
NA19328_LWK
NA19316_LWK
NA19310_LWK
NA19310_LWK
NA19256_YRI
NA19236_YRI
NA19197_YRI
NA19147_YRI
NA19147_YRI
NA19121_YRI

NA19038_LWK
NA18934_YRI
NA18923_YRI
NA18907_YRI
NA18874_YRI
NA18871_YRI
NA18861_YRI
NA18516_YRI
NA18516_YRI

NA12843_CEU
NA12413_CEU
NA12341_CEU
HG00337_FIN
HG00310_FIN
HG00173_FIN

HG00159_GBR

Figure 4: Another example of a haplotype cluster from chromosome 1 of the 1000Genomes
project. See Fig. 3 for a description. Again probable phasing errors at individuals NA18516,
NA19310, and NA19384.
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2 Getting Started

2.1 Typical Analysis Pipeline

First, we briefly describe a typical analysis pipeline. Assume we have the genotype data of
chromosome 1 in the file filename.vcf.gz in compressed vcf format. To prepare the data
for hapFabia we have to perform preprocessing steps. First filename.vcf.gz must be 1. un-
compressed, then 2. converted to the sparse matrix format, and then 3. split into segments. The
following command line commands perform these steps:

1. gunzip filename.vcf.gz

2. ./vcftoFABIA filename ./

3. ./split_sparse_matrix filename _mat.txt 10000 5000 1

The command line tools for step 2. and 3. are provided by the package hapFabia in inst/commandline/arch/.
However step 2. and 3. can be performed in R as well (see below). The commandline parameters
for vcftoFABIA are 1) filename without .vcf and 2) path to the file. The commandline parameters
for split_sparse_matrix are 1) filename without .vcf 2) extension (default_mat.txt) 3) seg-
ment length 4) shift size 5) indicator whether annotation is present (is generated by vcftoFABIA
as default). The data is split into segments of 10,000 SNVs where the distance between adjacent
segments is 5,000 thus they overlap by 5,000 SNVs.

After providing the file filename.vcf the following steps constitute a typical analysis pipeline
in R :

R> #####define segments, overlap, filename #######
R> shiftSize <- 5000
R> segmentSize <- 10000
R> fileName="filename" # without type
R>
R> #####load libraries#######
R> library(hapFabia)
R> library(fabia)
R>
R> #####convert from .vcf to _mat.txt: step 2. above#######
R> vcftoFABIA(fileName=fileName)
R>
R> #####split/ generate segments: step 3. above#######
R> split_sparse_matrix(fileName=fileName,segmentSize=segmentSize,
+ shiftSize=shiftSize,annotation=TRUE)
R>
R> #####compute how many segments we have#######
R> ina <- as.numeric(readLines(paste(fileName,"_mat.txt",sep=""),n=2))
R> noSNVs <- ina[2]
R> over <- segmentSize%/%shiftSize
R> N1 <- noSNVs%/%shiftSize
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R> endRunA <- (N1-over+2)
R>
R> #####analyze each segment#######
R> #####may be done by parallel runs#######
R> iterateSegments(startRun=1,endRun=endRunA,shift=shiftSize,
+ segmentSize=segmentSize,fileName=fileName,individuals=0,
+ upperBP=0.05,p=10,iter=40,alpha=0.03,cyc=50,haploClusterLength=50,
+ Lt = 0.1,Zt = 0.2,thresCount=1e-5,mintagSNVsFactor=3/4,
+ pMAF=0.035,haplotypes=TRUE)
R>
R> #####identify duplicates#######
R> identifyDuplicates(fileName=fileName,startRun=1,endRun=endRunA,
+ shift=shiftSize,segmentSize=segmentSize)
R>
R> #####analyze results; parallel#######
R> anaRes <- analyzeHaploClusters(fileName=fileName,startRun=1,endRun=endRunA,
+ shift=shiftSize,segmentSize=segmentSize)
R> print("Number haplotype clusters:")
R> print(anaRes$nohaploClusters)
R> print("Statistics on haplotye cluster length in SNVs (all SNVs in the haplotype cluster):")
R> print(anaRes$avhaploClusterLengthSNVS)
R> print("Statistics on haplotye cluster length in kbps:")
R> print(anaRes$avhaploClusterLengthS)
R> print("Statistics on number of individuals belonging to haplotye clusters:")
R> print(anaRes$avnoIndividS)
R> print("Statistics on number of tagSNVs of haplotye clusters:")
R> print(anaRes$avnoTagSNVsS)
R> print("Statistics on MAF of tagSNVs of haplotye clusters:")
R> print(anaRes$avnoFreqS)
R> print("Statistics on MAF within the group of tagSNVs of haplotye clusters:")
R> print(anaRes$avnoGroupFreqS)
R> print("Statistics on number of changes between major and minor allele frequency:")
R> print(anaRes$avnotagSNVChangeS)
R> print("Statistics on tagSNVs per individual of a haplotype cluster:")
R> print(anaRes$avnotagSNVsPerIndividualS)
R> print("Statistics on number of individuals that have the minor allele of tagSNVs:")
R> print(anaRes$avnoindividualPerTagSNVS)
R>
R> #####load result for segment 50#######
R> posAll <- 50 # (50-1)*5000 = 245000: segment 245000 to 255000
R> start <- (posAll-1)*shiftSize
R> end <- start + segmentSize
R> pRange <- paste("_",format(start,scientific=FALSE),"_",
+ format(end,scientific=FALSE),sep="")
R> load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
R> haploClusterList <- resHapFabia$mergedHaploClusterList # $
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R>
R> summary(haploClusterList)
R> #####plot haplotype clusters in segment 50#######
R> plot(haploClusterList,filename=paste(fileName,pRange,"_mat",sep=""))
R> ##attention: filename without type ".txt"
R>
R> #####plot the first haplotype cluster in segment 50#######
R>
R> haploCluster <- haploClusterList[[1]]
R> plot(haploCluster,filename=paste(fileName,pRange,"_mat",sep=""))
R> ##attention: filename without type ".txt"

First the packages hapFabia and fabia are loaded. Then filename.vcf is converted by vcftoFABIA
to sparse matrix format filename_mat.txt, where the SNV annotation file filename_annot.txt
and the label for the individuals filename_individuals.txt are generated, too. The func-
tion split_sparse_matrix splits chromosome 1 into segments of length 10,000 SNVs with a
distance of 5,000 SNVs between the segments. This results in 640 segments because we had
more than 3,200,000 and less than 3,210,000 SNVs in the genotype data. Using the function
iterateSegments haplotype clusters are identified in these segments and the results stored in a
EXCEL like .csv format and as R data object. The function identifyDuplicates marks and
memorizes duplicates of haplotype clusters which occur because the segments overlap. Next the
function analyzeHaploClusters analyzes the results where duplicates as marked in previous
step are not considered. Results are listed by anaRes.

The next example shows how to view all haplotype clusters of a segment, for which we chose
segment 50 which corresponds to chromosome 1 interval from 245,000 to 255,000 ((50 − 1) ∗
5000 = 245000). Then we plot a specific haplotype cluster, in this case the first (haploClusterList[[1]]),
which can also be used to store a .pdf or a .fig for editing with Xfig. Examples of this plot func-
tion are given in Fig. 3 and Fig. 4.

An R source file pipeline.R of above pipeline can be created and executed as follows:

R> makePipelineFile("filename",shiftSize=5000,segmentSize=10000)
R>
R> source("pipeline.R")

NOTE: sourcing may take a while for large datasets.

The next example shows how to use the pipeline.

2.2 Examples

Next we show an example how to use hapFabia. This example shows how to run the whole
pipeline if the genotype data is given as .vcf file. The data is first converted to a sparse matrix
format by vcftoFABIA and then divided into overlapping segments by split_sparse_matrix.
Then the haplotype clusters are extracted by iterateSegments and duplicates due to overlapping
segment marked by identifyDuplicates. Subsequently the haplotype clusters are analyzed by
analyzeHaploClusters, where only simple statistics are computed.

Work in a temporary directory.
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> old_dir <- getwd()
> setwd(tempdir())

First the packages are loaded.

> library(hapFabia)
> library(fabia)

Load data and write to vcf file. In a real application the data is already given, therefore this
chunk of code would not be necessary.

> data(chr1ASW1000G)
> write(chr1ASW1000G,file="chr1ASW1000G.vcf")

Create the analysis pipeline were segments are only 1,000 SNVs (that is about 100 kbps),
while default is 10,000 SNVs (that is about 1Mbp).

> makePipelineFile(fileName="chr1ASW1000G",shiftSize=500,segmentSize=1000)

Now the pipeline can be executed by sourcing it.

> source("pipeline.R")

Next we list the produced files, where _N1_N2_ indicates that the file contains information
concerning the segment that starts at N1 and ends at N2, _ALL.Rda stores just the number of
individuals and the number of SNVs, _individuals.txt contains annotation for the individu-
als (in particular their names), _mat.txt denotes phased genotype data in sparse matrix format,
_matD.txt contains the genotype data as dosage in sparse matrix format, _matG.txt contains
unphased genotype data in sparse matrix format, _annot.txt supplies information on the SNVs,
_resAnno.Rda is the result from hapFabia, the result is also available as csv file with extension
_csv.txt.

Following files have been generated:

> list.files(pattern="chr1")

[1] "chr1ASW1000G.vcf"
[2] "chr1ASW1000G_0_1000.csv"
[3] "chr1ASW1000G_0_1000_annot.txt"
[4] "chr1ASW1000G_0_1000_mat.txt"
[5] "chr1ASW1000G_0_1000_resAnno.Rda"
[6] "chr1ASW1000G_1000_2000.csv"
[7] "chr1ASW1000G_1000_2000_annot.txt"
[8] "chr1ASW1000G_1000_2000_mat.txt"
[9] "chr1ASW1000G_1000_2000_resAnno.Rda"

[10] "chr1ASW1000G_1500_2500.csv"
[11] "chr1ASW1000G_1500_2500_annot.txt"
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[12] "chr1ASW1000G_1500_2500_mat.txt"
[13] "chr1ASW1000G_1500_2500_resAnno.Rda"
[14] "chr1ASW1000G_2000_3000.csv"
[15] "chr1ASW1000G_2000_3000_annot.txt"
[16] "chr1ASW1000G_2000_3000_mat.txt"
[17] "chr1ASW1000G_2000_3000_resAnno.Rda"
[18] "chr1ASW1000G_2500_3022.csv"
[19] "chr1ASW1000G_2500_3022_annot.txt"
[20] "chr1ASW1000G_2500_3022_mat.txt"
[21] "chr1ASW1000G_2500_3022_resAnno.Rda"
[22] "chr1ASW1000G_500_1500.csv"
[23] "chr1ASW1000G_500_1500_annot.txt"
[24] "chr1ASW1000G_500_1500_mat.txt"
[25] "chr1ASW1000G_500_1500_resAnno.Rda"
[26] "chr1ASW1000G_All.Rda"
[27] "chr1ASW1000G_annot.txt"
[28] "chr1ASW1000G_individuals.txt"
[29] "chr1ASW1000G_mat.txt"
[30] "chr1ASW1000G_matD.txt"
[31] "chr1ASW1000G_matG.txt"

Following shows the results of calling the function analyzeHaploClusters in the pipeline:

> print("Number haplotype clusters:")

[1] "Number haplotype clusters:"

> print(anaRes$nohaploClusters)

[1] 43

> print("Statistics on haplotye cluster length in SNVs (all SNVs in the haplotype cluster):")

[1] "Statistics on haplotye cluster length in SNVs (all SNVs in the haplotype cluster):"

> print(anaRes$avhaploClusterLengthSNVS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
96.0 223.0 340.0 309.9 406.0 666.0

> print("Statistics on haplotye cluster length in kbps:")

[1] "Statistics on haplotye cluster length in kbps:"

> print(anaRes$avhaploClusterLengthS)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
9181 28650 37040 36090 44220 73990

> print("Statistics on number of individuals belonging to haplotye clusters:")

[1] "Statistics on number of individuals belonging to haplotye clusters:"

> print(anaRes$avnoIndividS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 2.000 2.000 2.767 3.000 8.000

> print("Statistics on number of tagSNVs of haplotye clusters:")

[1] "Statistics on number of tagSNVs of haplotye clusters:"

> print(anaRes$avnoTagSNVsS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
7.00 8.50 12.00 15.02 18.00 54.00

> print("Statistics on MAF of tagSNVs of haplotye clusters:")

[1] "Statistics on MAF of tagSNVs of haplotye clusters:"

> print(anaRes$avnoFreqS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01639 0.01639 0.02459 0.03649 0.04098 0.97540

> print("Statistics on MAF within the group of tagSNVs of haplotye clusters:")

[1] "Statistics on MAF within the group of tagSNVs of haplotye clusters:"

> print(anaRes$avnoGroupFreqS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.01639 0.01639 0.02459 0.02944 0.04098 0.04918

> print("Statistics on number of changes between major and minor allele frequency:")

[1] "Statistics on number of changes between major and minor allele frequency:"
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> print(anaRes$avnotagSNVChangeS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.00000 0.00000 0.00000 0.00774 0.00000 1.00000

> print("Statistics on number of tagSNVs per individual of a haplotype cluster:")

[1] "Statistics on number of tagSNVs per individual of a haplotype cluster:"

> print(anaRes$avnotagSNVsPerIndividualS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
7.00 9.00 12.00 14.38 17.00 44.00

> print("Statistics on number of individuals that have the minor allele of tagSNVs:")

[1] "Statistics on number of individuals that have the minor allele of tagSNVs:"

> print(anaRes$avnoindividualPerTagSNVS)

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.000 2.000 2.000 2.686 3.000 6.000

Next we load segment 5 and there the first and second haplotype cluster

> posAll <- 5
> start <- (posAll-1)*shiftSize
> end <- start + segmentSize
> pRange <- paste("_",format(start,scientific=FALSE),"_",
+ format(end,scientific=FALSE),sep="")
> load(file=paste(fileName,pRange,"_resAnno",".Rda",sep=""))
> haploClusterList <- resHapFabia$mergedHaploClusterList
> summary(haploClusterList)

An object of class HaploClusterList
Number of haplotype clusters: 8
Statistics:
$avhaploClusterPosS

Min. 1st Qu. Median Mean 3rd Qu. Max.
928900 949600 966400 972000 993200 1019000

$avhaploClusterLengthSNVS
Min. 1st Qu. Median Mean 3rd Qu. Max.
96.0 147.0 274.0 259.8 352.0 434.0
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$avhaploClusterLengthS
Min. 1st Qu. Median Mean 3rd Qu. Max.
9181 15040 33420 30690 43920 51350

$avnoIndividS
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 2.00 2.00 2.25 2.25 3.00

$avnoTagSNVsS
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.0 8.5 10.5 14.0 16.5 30.0

$avnoFreqS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01639 0.01639 0.02459 0.02496 0.03279 0.04918

$avnoGroupFreqS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.01639 0.01639 0.02459 0.02496 0.03279 0.04918

$avnotagSNVChangeS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

$avnotagSNVsPerIndividualS
Min. 1st Qu. Median Mean 3rd Qu. Max.
7.0 7.5 10.5 13.5 14.0 29.0

$avnoindividualPerTagSNVS
Min. 1st Qu. Median Mean 3rd Qu. Max.

2.000 2.000 2.000 2.188 2.000 3.000

> haploCluster1 <- haploClusterList[[1]]
> summary(haploCluster1)

An object of class HaploCluster
Haplotype cluster ID: 1
From bicluster: 2
Chromosome: 1
Position: 953,404
Length SNVs: 114
Length: 12 kbp
Number of individuals/chromosomes: 2
Number of tagSNVs: 10
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> haploCluster2 <- haploClusterList[[2]]
> summary(haploCluster2)

An object of class HaploCluster
Haplotype cluster ID: 2
From bicluster: 2
Chromosome: 1
Position: 953,918
Length SNVs: 388
Length: 47 kbp
Number of individuals/chromosomes: 2
Number of tagSNVs: 30

Finally go back to old directory.

> new_dir <- getwd()
> setwd(old_dir)

Plot the first haplotype cluster in segment 5

> plot(haploCluster1,filename=paste(new_dir,"/",fileName,pRange,"_mat",sep=""))

Using 2 samples!
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chr: 1  ||  pos: 952,036  ||  length: 12kbp  ||  #tagSNVs: 10  ||  #Individuals: 2

945,837 947,888 950,048 952,208 954,368 956,528 958,236

model L

NA20340_NA20340

NA19916_NA19916

Plot the second haplotype cluster in segment 5

> plot(haploCluster2,filename=paste(new_dir,"/",fileName,pRange,"_mat",sep=""))

Using 2 samples!



16 2 Getting Started

chr: 1  ||  pos: 956,458  ||  length: 47kbp  ||  #tagSNVs: 30  ||  #Individuals: 2

933,027 944,906 956,906 968,906 979,890

model L

NA19985_NA19985

NA19713_NA19713

Here an example with simulated data.

Work in temporary directory.

> old_dir <- getwd()
> setwd(tempdir())

The data simu is loaded and written into three files: dataSim1fabia_individuals.txt
(sample names), dataSim1fabia_annot.txt (SNV annotation information), and dataSim1fabia_mat.txt
(the data in sparse matrix format). These are files which are in the standard pipeline produced by
vcftoFABIA and by split_sparse_matrix.

> data(simu)
> namesL <- simu[["namesL"]]
> haploN <- simu[["haploN"]]
> snvs <- simu[["snvs"]]
> annot <- simu[["annot"]]
> alleleIimp <- simu[["alleleIimp"]]
> write.table(namesL,file="dataSim1fabia_individuals.txt",
+ quote = FALSE,row.names = FALSE,col.names = FALSE)
> write(as.integer(haploN),file="dataSim1fabia_annot.txt",



2 Getting Started 17

+ ncolumns=100)
> write(as.integer(snvs),file="dataSim1fabia_annot.txt",
+ append=TRUE,ncolumns=100)
> write.table(annot,file="dataSim1fabia_annot.txt", sep = " ",
+ quote = FALSE,row.names = FALSE,col.names = FALSE,append=TRUE)
> write(as.integer(haploN),file="dataSim1fabia_mat.txt",ncolumns=100)
> write(as.integer(snvs),file="dataSim1fabia_mat.txt",
+ append=TRUE,ncolumns=100)
> for (i in 1:haploN) {
+
+ a1 <- which(alleleIimp[i,]>0.01)
+
+ al <- length(a1)
+ b1 <- alleleIimp[i,a1]
+
+ a1 <- a1 - 1
+ dim(a1) <- c(1,al)
+ b1 <- format(as.double(b1),nsmall=1)
+ dim(b1) <- c(1,al)
+
+ write.table(al,file="dataSim1fabia_mat.txt", sep = " ",
+ quote = FALSE,row.names = FALSE,col.names = FALSE,append=TRUE)
+ write.table(a1,file="dataSim1fabia_mat.txt", sep = " ",
+ quote = FALSE,row.names = FALSE,col.names = FALSE,append=TRUE)
+ write.table(b1,file="dataSim1fabia_mat.txt", sep = " ",
+ quote = FALSE,row.names = FALSE,col.names = FALSE,append=TRUE)
+
+ }

Now the haplotype clusters can be extracted from the data:

> hapRes <- hapFabia(fileName="dataSim1fabia",prefixPath="",
+ upperBP=0.15,p=10,iter=1,haploClusterLength=10,pMAF=0.1)

> summary(hapRes$mergedHaploClusterList)

An object of class HaploClusterList
Number of haplotype clusters: 1
Statistics:
$avhaploClusterPosS

Min. 1st Qu. Median Mean 3rd Qu. Max.
79430 79430 79430 79430 79430 79430

$avhaploClusterLengthSNVS
Min. 1st Qu. Median Mean 3rd Qu. Max.

40 40 40 40 40 40
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$avhaploClusterLengthS
Min. 1st Qu. Median Mean 3rd Qu. Max.
3853 3853 3853 3853 3853 3853

$avnoIndividS
Min. 1st Qu. Median Mean 3rd Qu. Max.

10 10 10 10 10 10

$avnoTagSNVsS
Min. 1st Qu. Median Mean 3rd Qu. Max.

15 15 15 15 15 15

$avnoFreqS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.04500 0.07750 0.08500 0.08267 0.09250 0.11000

$avnoGroupFreqS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.04750 0.05875 0.06500 0.06333 0.07000 0.07250

$avnotagSNVChangeS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

$avnotagSNVsPerIndividualS
Min. 1st Qu. Median Mean 3rd Qu. Max.
14.0 14.0 14.0 14.4 15.0 15.0

$avnoindividualPerTagSNVS
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.0 10.0 10.0 9.6 10.0 10.0

To view the results the first haplotype cluster is plotted:

> mergedHaploClusterList <- hapRes$mergedHaploClusterList # $
> haploCluster <- mergedHaploClusterList[[1]]

> new_dir <- getwd()
> setwd(old_dir)

> plot(haploCluster,filename=paste(new_dir,"/dataSim1fabia_mat",sep=""))

Using 10 samples!
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chr: 1  ||  pos: 79,928  ||  length: 4kbp  ||  #tagSNVs: 15  ||  #Individuals: 10

78,002 78,865 79,825 80,785 81,745

model L

96_96

80_80

65_65

45_45

44_44

42_42

41_41

39_39

20_20

4_4

Here another example with random data:

> old_dir <- getwd()
> setwd(tempdir())

> simulateHaploClustersFabia(minruns=2,maxruns=2)

> hapRes <- hapFabia(fileName="dataSim1fabia",prefixPath="",
+ upperBP=0.15,p=10,iter=1,haploClusterLength=10,pMAF=0.1)

> summary(hapRes$mergedHaploClusterList)

An object of class HaploClusterList
Number of haplotype clusters: 1
Statistics:
$avhaploClusterPosS

Min. 1st Qu. Median Mean 3rd Qu. Max.
79430 79430 79430 79430 79430 79430

$avhaploClusterLengthSNVS
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Min. 1st Qu. Median Mean 3rd Qu. Max.
40 40 40 40 40 40

$avhaploClusterLengthS
Min. 1st Qu. Median Mean 3rd Qu. Max.
3853 3853 3853 3853 3853 3853

$avnoIndividS
Min. 1st Qu. Median Mean 3rd Qu. Max.

10 10 10 10 10 10

$avnoTagSNVsS
Min. 1st Qu. Median Mean 3rd Qu. Max.

15 15 15 15 15 15

$avnoFreqS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.04500 0.07750 0.08500 0.08267 0.09250 0.11000

$avnoGroupFreqS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.04750 0.05875 0.06500 0.06333 0.07000 0.07250

$avnotagSNVChangeS
Min. 1st Qu. Median Mean 3rd Qu. Max.

0 0 0 0 0 0

$avnotagSNVsPerIndividualS
Min. 1st Qu. Median Mean 3rd Qu. Max.
14.0 14.0 14.0 14.4 15.0 15.0

$avnoindividualPerTagSNVS
Min. 1st Qu. Median Mean 3rd Qu. Max.
4.0 10.0 10.0 9.6 10.0 10.0

> mergedHaploClusterList <- hapRes$mergedHaploClusterList # $
> haploCluster <- mergedHaploClusterList[[1]]

> new_dir <- getwd()
> setwd(old_dir)

> plot(haploCluster,filename=paste(new_dir,"/dataSim2fabia_mat",sep=""))

Using 10 samples!
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chr: 1  ||  pos: 79,928  ||  length: 4kbp  ||  #tagSNVs: 15  ||  #Individuals: 10

78,002 78,865 79,825 80,785 81,745

model L

96_96

80_80

65_65

45_45

44_44

42_42

41_41

39_39

20_20

4_4

3 hapFabia Method

We introduce our novel method HapFABIA for extracting rare and short haplotype clusters from
large sequencing data. HapFABIA first applies FABIA biclustering to phased or unphased geno-
type data. The first step, biclustering, extracts similarities between individuals based on a subset
of SNVs but does not consider that haplotype clusters consist of contiguous nucleotides. In the
second step, HapFABIA therefore extracts haplotype clusters from FABIA models by considering
local tagSNV accumulations and pruning spurious correlations of SNVs with a haplotype cluster.
These two HapFABIA steps are described in the next two subsections.

FABIA for genotype data

We propose identifying similarities between individuals by biclustering. A bicluster corresponds
to a haplotype cluster where individuals are similar to each other by virtue of being identical at
minor alleles of tagSNVs. Panel B in Fig. 2 shows such a bicluster.

For biclustering we use the “Factor Analysis for Bicluster Acquisition” (FABIA) biclustering
model Hochreiter et al. (2010). In contrast to other biclustering methods such as BIMAX Prelic
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et al. (2006) and QUBIC Li et al. (2009), FABIA can represent homozygous regions and over-
lapping haplotype clusters because of its multiplicative bicluster model and a data model that is
additive in its biclusters (see below). FABIA can be applied to discrete genotype data but also to
real values that give the minor allele likelihood or the minor allele dosage. We use FABIA not only
because it is well suited for genotyping data, but also because it outperformed other biclustering
methods in extensive comparisons on different data sets Hochreiter et al. (2010).

FABIA models genotype data by haplotype clusters

FABIA describes genotype data X by an outer product z λT of two vectors λ and z. The vector
λ corresponds to a haplotype cluster that contains ones for haplotype cluster tagSNVs and zeros
otherwise. Vector z indicates the number of segments of an individual that belong to the haplotype
cluster (multiploidy). FABIA can represent a homozygous region, that is, two occurrences of a
haplotype in one diploid individual, by zi = 2. Fig. ?? visualizes this representation of a genotype
matrix by an outer product for one haplotype cluster.

A diploid individual may participate at two haplotype clusters at a particular locus. In this
case genotyping sums the occurrences of minor alleles, which is reflected by the additive FABIA
model. If we assume genotyping errors, the FABIA model for genotype dataX is

X =

p∑
i=1

zi λ
T
i + Υ = Z Λ + Υ , (1)

whereX ∈ Rl×n is the genotyping data; Z ∈ Rl×p is the matrix that gives for each individual the
number of segments that belong to a haplotype cluster; Λ ∈ Rp×n is the haplotype cluster tagSNV
matrix; Υ ∈ Rl×n is additive noise; n is the number of SNVs; l is the number of individuals
(or chromosomes for phased genotypes); p is the number of haplotype clusters; λi ∈ Rn is the
ith haplotype cluster tagSNV vector (the ith row of Λ); and zi ∈ Rl gives for each individual
the number of segments that belong to the i-th haplotype cluster (the ith column of Z). The
additive noise not only covers genotyping errors but also genotypes which cannot be explained
by haplotype clusters. Such unexplained genotypes may arise from recently acquired SNVs or
haplotype cluster segments that were fragmented by recombination events.

The FABIA model in Eq. (1) allows a generative interpretation by a factor analysis model with
p factors:

x =

p∑
i=1

λi zi + ε = ΛT z + ε , (2)

where x ∈ Rn is an observed genotype (a row of X written as column vector), the vector of
factors z ∈ Rp gives the number of segments belonging to each haplotype cluster for genotype x,
zi is the number of segments that belong to the i-th haplotype cluster (a component of both zi and
z), and ε ∈ Rn is the additive noise (a row of Υ written as column vector).

As illustrated in Fig. ??, both the vector zi and the vector λi of haplotype cluster tagSNVs
should be sparse. Sparse zi means that only few individuals belong to the haplotype cluster, that
is, the haplotype cluster is rare. Sparse λi means that only few SNVs are tagSNVs, which implies
short haplotype clusters. Sparse zi can be achieved if all components zi are sparse, that is, if the
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vector of factors z is sparse. Note, that zi ∈ Rl in Eq. (1) gives for each of the l individuals the
number of segments that belong to the i-th haplotype cluster, while z ∈ Rp gives the number of
segments belonging to each of the p haplotype clusters for one genotype x. In contrast to standard
factor analysis, FABIA’s model selection is tailored to sparse factors and sparse loadings, which
are essential for haplotype cluster detection. Sparseness in the FABIA model is obtained by a
component-wise independent Laplace distribution both for the prior on the parameters λi and the
distribution of the factors z ?:

p(z) =
(

1√
2

)p p∏
i=1

e−
√
2 |zi| (3)

p(λi) =
(

1√
2

)n n∏
k=1

e−
√
2 |λki| (4)

The Laplace distribution of the factors leads to the analytically intractable likelihood:

p(x | Λ,Ψ) =

∫
p(x | z,Λ,Ψ) p(z) dz . (5)

Therefore, FABIA model selection is performed by means of variational expectation maximiza-
tion, which is a variational optimization in the expectation maximization (EM) framework to max-
imize the posterior of the parameters Girolami (2001); ?); Hochreiter et al. (2010); Clevert et al.
(2011); Klambauer et al. (2012). The idea of the variational approach is to express the prior p(z)
by the maximum

p(z) = max
ξ

p(z | ξ) (6)

over a model family p(z | ξ) that is parametrized by the variational parameter ξ or by scale
mixtures

p(z) =

∫
p(z | ξ) dµ(ξ) . (7)

A Laplace distribution can be expressed exactly by the maximum of a Gaussian family or by Gaus-
sian scale mixtures Girolami (2001); ?. Therefore for each x, the maximum ξ̂ of the variational
parameter ξ allows to represent the Laplacian prior by a Gaussian:

ξ̂ = argmax
ξ

p(ξ | x) . (8)

The maximum ξ̂ can be computed analytically (see Eq. (11) below) because for each Gaussian the
likelihood Eq. (5) can be computed analytically.

If we denote the jth genotype by xj ∈ Rn with corresponding factors zj ∈ Rp, then we obtain
the following variational E-step Hochreiter et al. (2010):

E
(
zj | xj

)
=
(
ΛT Ψ−1 Λ + Ξ−1j

)−1
ΛT Ψ−1 xj , (9)

E
(
zj z

T
j | xj

)
=
(
ΛT Ψ−1 Λ + Ξ−1j

)−1
+ (10)

E
(
zj | xj

)
E(zj | xj)T ,
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where Ξj means diag (ξj). The update for the variational parameter ξj is

ξj = diag
(√

E(zj zTj | xj)
)
. (11)

The variational M-step is Hochreiter et al. (2010)

Λnew =
1
l

∑l
j=1 xj E(zj | xj)T −

α
l Ψ sign(Λ)

1
l

∑l
j=1 E(zj z

T
j | xj)

(12)

diag (Ψnew) = ΨEM + diag
(α
l
Ψ sign(Λ)(Λnew)T

)
, (13)

ΨEM = diag

(
1

l

l∑
j=1

xj x
T
j − Λnew 1

l

l∑
j=1

E (zj | xj) xTj
)
. (14)

The parameter α controls the degree of sparseness (an expectation of how rare the haplotype
clusters are) and can be introduced as a parameter of the Laplacian prior of the factors Hochreiter
et al. (2010).

Note, that the number of bicluster must not be determined a priori if p is chosen large enough.
The sparseness constraint will remove spurious biclusters by setting λ to a zero vector. In this way
FABIA automatically determines the number of biclusters.

Adaptation of FABIA for haplotype cluster detection

Since an entry in the genotype matrix X reports how often the minor allele is present, FABIA
must explain occurrences of minor alleles through haplotype clusters. Because both the counts
of minor alleles and the the occurrences of segments in haplotype clusters are non-negative, we
modified FABIA to enforce non-negative loadings λi by projecting negative components of λi to
zero. If both xj and Λ are non-negative, the posterior mean E

(
zj | xj

)
of zj is non-negative,

too. Therefore also Λnew is non-negative, because the prior term in the update rule is not allowed
to change the sign of the loadings. Therefore it is sufficient to initialize Λ by positive values to
enforce non-negative factors and loadings. Z is estimated by the prior mean E

(
zj | xj

)
and used

to identify individuals belonging to a haplotype cluster.

Further we developed a sparse matrix algebra which represents only non-zero values and in-
dices for FABIA biclustering in order to efficiently analyze large genotyping data. In Eq. (9) to
Eq. (14) the values of the genotype vectors xj and the values of the loading vector λi and the
loading matrix Λ are sparse. Therefore we introduced a sparse matrix algebra for multiplying
both two sparse vectors and a sparse vector by a dense vector.

To further speed up the computation, we developed an iterative version of FABIA. Each
FABIA iteration detects p biclusters. These p biclusters are removed from the genotype matrix
X before starting the next iteration.

The vectors λi and zi acquire a new interpretation when detecting rare haplotype clusters.
Components of λi correspond to tagSNVs and indicate to what degree they belong to the i-th
haplotype cluster. These components in particular indicate how many bicluster individuals possess
the minor allele of the corresponding tagSNV. Components of zi correspond to individuals and
indicate both the number of segments that belong to the haplotype cluster and to what degree the
individual’s genotype matches the haplotype cluster.
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Haplotype cluster extraction from FABIA models

FABIA biclustering extracts correlated SNVs but does not consider that a haplotype cluster con-
sists of contiguous nucleotides which lead to local accumulations of a haplotype cluster’s tagSNVs.
This information can be used to separate unwanted spurious correlations between SNVs from de-
sired correlations between tagSNVs. Further, haplotype clusters may overlap at ancient, preex-
isting SNVs and therefore may be joined in a FABIA model. Note that not all ancient SNVs are
common and can be filtered out in a preprocessing step. FABIA may also join haplotype clusters
if they contain the same individuals.

FABIA biclustering does not regard the order of SNVs or individuals, thus random shuffling of
SNVs does not change its result. Therefore randomly correlated SNVs that are found by FABIA
would be uniformly distributed along the chromosome. However SNVs that are correlated because
they are tagSNVs of a haplotype cluster agglomerate locally as they originate from an ancient
segment. Deviations from the null hypothesis of uniformly distributed SNVs can be detected by a
binomial test for the number of expected SNVs within an interval if the SNV frequency is given.
A low p-value hints at local agglomerations of bicluster SNVs stemming from a haplotype cluster.

We propose a four-step procedure to extract haplotype clusters from FABIA models:

1. identifying local agglomerations of correlated SNVs based on a binomial test,

2. disentangling haplotype clusters and re-assigning individuals or chromosomes to haplotype
clusters,

3. pruning haplotype clusters from SNVs with spurious correlations based on an exponential
test,

4. merging similar haplotype clusters, and joining the parts of large haplotype clusters that
were divided by the bins from the first step.

Step 1: FABIA model selection is independent of the order of both the individuals/chromosomes
and the SNVs. Therefore, spurious correlated SNVs are unlikely to agglomerate at a DNA locus,
whereas local SNV agglomerations hint at a haplotype cluster. To detect agglomerations, we
compute histogram counts of the largest values of the FABIA model parameters λi. The thresh-
old “Lt” (fixed to 0.1) gives the percentage of largest λi values that are used for the histogram.
The HapFABIA parameter “haploClusterLength” gives the largest haplotype cluster (in kbp or
centiMorgans) to be considered. The histogram bin size in number of SNVs is computed from
“haploClusterLength” using the average genomic distance between adjacent SNVs. To account
for haplotype clusters that exceed bin borders, the histogram is computed a second time with bins
shifted by half the bin size.

The histogram bins with more counts than expected are assumed to contain haplotype clusters.
We rank bin counts that exceed the expected value by a binomial test in order to select bins. We
need to compute how many SNVs are expected in a bin, that is, the probability of observing k or
more bin counts. Without errors in the factor analysis model, the minor allele of each tagSNV is
present in each of the t individuals belonging to the haplotype cluster. Let p be the probability of a
random minor allele match between t individuals. The probability of observing k or more matches
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for n SNVs in a bin is given by one minus the binomial distribution F (k;n, p):

1 − F (k − 1;n, p) = Pr(K ≥ k) =
n∑
i=k

(
n

i

)
pi (1− p)n−i . (15)

If q is the minor allele frequency (MAF) for one SNV, the probability p of observing the minor
allele of this SNV in all t individuals is p = qt. We assume that all SNVs have the same MAF
q — in the experiments we used the average MAF. For b bins, the probability of observing k or
more counts in at least one bin is

b

(
l

t

) n∑
i=k

(
n

i

)
qit
(
1− qt

)n−i
, (16)

where l is the number of individuals and
(
l
t

)
is the number of possibilities to chose t individuals

from the l individuals. If the probability Eq. (16) is below the threshold “thresCount”, the accord-
ing bin is selected for haplotype cluster extraction. If kmin is the minimum k for which Eq. (16)
is below the threshold “thresCount”, then all bins with counts k ≥ kmin are selected. In our ex-
periments, we allow haplotype clusters of only two individuals (like for IBD), and therefore set
t = 2.

If a bin is selected, SNVs and individuals must be assigned to it. Note that bicluster member-
ships of FABIA biclusters cannot be used directly, because they include all bins. First, those SNVs
that contributed to its count are assigned to the selected bin. Then, individuals or chromosomes
are assigned to the selected bin if they possess a minor allele at one or more SNVs that have been
assigned to the bin. Individuals are only chosen from the top z-values of the FABIA model to
ensure that individuals are indeed similar to each other. The parameter “Zt” (fixed to 0.2) gives
the percentage of top z-scores that are considered.

Step 2: In this step, haplotype clusters in a selected bin are disentangled, considering only
SNVs and individuals that have been assigned to the bin. A haplotype cluster is initialized by
two core individuals that are identical at m or more minor alleles. The number m is computed as
m = mintagSNVsFactor × kmin. All individuals that are identical in least m minor alleles to one
of the two core haplotype cluster individuals are classified as belonging to the haplotype cluster.

The tagSNVs of a haplotype cluster are SNVs that have their minor allele in at least 2 indi-
viduals of the haplotype cluster. Alternatively, tagSNVs must have their minor allele in at least a
specific percentage of haplotype cluster individuals (but in at least 2).

Step 2 is repeated after removing the current haplotype cluster by deleting the cluster’s tagSNVs
until no more core individuals are found.

Step3 : This step prunes haplotype cluster borders of SNVs that have spurious correlations to
the haplotype cluster. Spurious correlations may still be present in a bin leading to an overestima-
tion of the cluster length. Such SNVs can be identified by deviations of their MAFs from those of
other tagSNVs. However, this criterion is not reliable for rare SNVs. Therefore, we identify SNVs
with spurious correlations to the haplotype cluster on the basis of unusually large distances to other
tagSNVs. The deviation from an expected distance is quantified by means of an exponential dis-
tribution with the median distance between tagSNVs as parameter. SNVs with distances leading
to p-values below 1e-3 are removed. The two furthest upstream and the two furthest downstream
tagSNVs are tested for their distances to other tagSNVs. If the second-furthest up- or downstream
tagSNV is removed, then the furthest up- or downstream tagSNV is removed, too.
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Step 4: Haplotype clusters which are very similar to each other are merged. Further, large
haplotype cluster that were divided by the bins into smaller parts are reconstructed in this step.
Thus, Haplotype clusters larger than given by the bin sizes can be detected. In order to compute
similarities, we assess how many tagSNVs or individuals of the smaller haplotype cluster are
explained by the larger haplotype cluster. This criterion is expressed by the “overlap coefficient”

O(A,B) =
|A ∩B|

min{|A|, |B|}
. (17)

Using the overlap coefficient for both tagSNVs and individuals, we define a distance-like measure
between haplotype clusters H1 and H2 by

D(H1, H2) = 1 − O(SH1 , SH2) O(IH1 , IH2) , (18)

where SHi and IHi are the tagSNVs and individuals belonging to haplotype cluster Hi, respec-
tively. Using measure D, haplotype clusters within overlapping (shifted) or neighboring bins are
clustered by hierarchical clustering using complete linkage. Haplotype clusters are merged if their
segments are clustered together below a cutting height of 0.8.

4 Tools to Analyze fabia Results

To analyze the fabia results we provide some functions. This might be convenient if parameters
are optimized for a specific data set.

Accumulations of fabia loadings can be given as histogram counts to see locations of accu-
mulations:

> data(res)
> h1 <- histL(res,n=1,p=0.9,w=NULL,intervv=50,off=0)
> print(h1$counts)

[1] 9 5 7 7 5 4 4 4 5 4 3 6 1 5 6 4 1 4
[19] 5 11

> h1 <- histL(res,n=1,p=NULL,w=0.5,intervv=50,off=0)
> print(h1$counts)

[1] 4 2 6 5 4 3 3 4 3 3 1 4 0 4 3 3 1 3 3 7

fabia loadings can be plotted to identify locations of accumulations:

> data(res)
> plotL(res,n=1,p=0.95,w=NULL,type="histogram",intervv=50,off=0,t="p",cex=1)
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> data(res)
> plotL(res,n=1,p=0.95,w=NULL,type="points",intervv=50,off=0,t="p",cex=1)
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> data(res)
> plotL(res,n=1,p=NULL,w=0.5,type="histogram",intervv=50,off=0,t="p",cex=1)
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> data(res)
> plotL(res,n=1,p=0.95,w=NULL,type="smooth",intervv=50,off=0,t="p",cex=1)
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> data(res)
> plotL(res,n=1,p=NULL,w=0.5,type="smooth",intervv=50,off=0,t="p",cex=1)
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Finally the largest fabia loadings L and factors Z can be listed. The largest values must
exceed a threshold either given by quantile p or a value w:

> data(res)
> topLZ(res,n=1,LZ="L",indices=TRUE,p=0.95,w=NULL)

[1] 27 45 49 88 95 125 139 143 162 164 186 205 211 212
[15] 229 259 264 266 323 332 337 358 394 401 414 417 419 468
[29] 487 492 534 565 567 574 656 666 688 705 746 756 775 777
[43] 877 898 900 911 958 959 968 989

> topLZ(res,n=1,LZ="L",indices=TRUE,p=NULL,w=0.95)

[1] 125 164 212 417 419 877

> topLZ(res,n=1,LZ="Z",indices=TRUE,p=0.95,w=NULL)

[1] 6 20 35 58 91 94 102 105 108 114

> topLZ(res,n=1,LZ="Z",indices=TRUE,p=NULL,w=0.4)
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[1] 6 102

> topLZ(res,n=1,LZ="L",indices=FALSE,p=0.95,w=NULL)

[1] 0.6383142 0.6927502 0.9015600 0.8025189 0.7258389
[6] 0.9553665 0.8696658 0.9197025 0.5771737 1.1055338

[11] 0.6178381 0.7516020 0.7300434 1.2052466 0.5862968
[16] 0.6237540 0.6692794 0.5709860 0.5960892 0.8277471
[21] 0.5512068 0.8329555 0.6040622 0.6709233 0.8271526
[26] 0.9685284 1.0129973 0.6424376 0.7400939 0.8140626
[31] 0.7644123 0.6474202 0.6518362 0.8894892 0.7627514
[36] 0.5580086 0.6072268 0.6685370 0.7733036 0.5666094
[41] 0.6699066 0.6692214 0.9845007 0.6107024 0.6556427
[46] 0.8261591 0.6278021 0.5662607 0.5792704 0.8157592

> topLZ(res,n=1,LZ="L",indices=FALSE,p=NULL,w=0.95)

[1] 0.9553665 1.1055338 1.2052466 0.9685284 1.0129973
[6] 0.9845007

> topLZ(res,1,LZ="Z",indices=FALSE,p=0.95,w=NULL)

[1] 0.4015947 0.3433146 0.3677638 0.3482399 0.3199918
[6] 0.2772825 0.7713440 0.3260151 0.2891986 0.3086591

> topLZ(res,1,LZ="Z",indices=FALSE,p=NULL,w=0.4)

[1] 0.4015947 0.7713440
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