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Chapter 1

Biological Basics

This chapter gives an overview over the biological basics needed in bioinformatics. Students with
a background in biology or life sciences may skip this chapter if they are familiar with cell biology
or molecular biology.

The chapter starts with the structure of the eukaryotic cell, then states the “central dogma
of molecular biology”, explains the DNA, explains the RNA, discusses transcription, explains
splicing, introduces amino acids, describes the genetic code, explains translation, and finally sum-
marizes the protein folding process.

1.1 The Cell

Each human consists of 10 to 100 trillions (1013 to 1014) of cells which have quite different
functions. Muscle cells are needed to transform chemical energy into mechanical energy, nerve
cells transport information via electrical potential, liver cells produce enzymes, sensory cells must
respond to external conditions, blood cells must transport oxygen, sperm and egg cell are needed
for reproduction, connective tissue cells are needed for bone, fat, fibers, etc.

We focus on the eukaryotic cells, i.e. complex cells with a nucleus as in mammals, in contrast
to prokaryotic cells (no nucleus) found in bacteria and archaea (organisms similar to bacteria
which live in extreme conditions). Each cell is a very complex organization like a whole country
with power plants, export and import products, library, production machines, highly developed
organization to keep the property, delivery systems, defense mechanism, information network,
control mechanism, repair mechanism, regulation mechanism, etc.

A cell’s diameter is between 10 and 30 µm and consists mostly of water inside a membrane
“bag”. The membrane is a phospholipid bilayer with pores which allow things to go out of and
into the cell.

The fluid within a cell is called “the cytoplasm” consisting besides the water of free amino
acids (→), proteins (→), nucleic acids (→), RNA (→), DNA (→), glucose (energy supply medium),
and more. The molecules of the cytoplasm are 50% proteins, 15% nucleic acids, 15% carbohy-
drates (storage devices or building blocks for structures), 10% lipids (structures with water hating
tails; needed to build membranes), and 10% other. Inside the cytoplasm there are various struc-
tures called organelles (with membranes) whereas the remaining fluid is called “cytosol” (mostly
water).

1
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Organelles:

Nucleus: location of the DNA, transcription and many “housekeeping” proteins (→); center
is nucleolus where ribosomal RNA is produced.

Endoplasmic Reticulum (ER): protein construction and transport machinery; smooth ER
also participates in the synthesis of various lipids, fatty acids and steroids (e.g., hormones),
carbohydrate metabolism.

Ribosomes (→): either located on the ER or free in the cytosol; machinery for translation
(→), i.e. mRNA (→) is transformed into amino acid sequences which fold (→) and become
the proteins.

Golgi Apparatus: glycosylation, secretion; processes proteins which are transported in vesi-
cles (chemical changes or adding of molecules).

Lysosomes: digestion; contain digestive enzymes (acid hydrolases) to digest macromolecules
including lipases, which digest lipids, carbohydrases for the digestion of carbohydrates (e.g.,
sugars), proteases for proteins, and nucleases, which digest nucleic acids.

Centrosome: important for cell cycle

Peroxisomes: catabolic reactions through oxygen; they rid the cell of toxic substances.

Microtubules: built from tubulin, cell structure elements (size of the cell) and transport ways
for transport proteins

Cytoskeleton: Microtubules, actin and intermediate filaments. These are structure building
components.

Mitochondria: energy (ATP (→)) production from food, has its on genetic material and
ribosomes (37 genes (→) in humans variants are called “haplotypes” (→)), only maternal
inheritance

The only difference between cells is the different proteins they produce. Protein production
not only determines the cell type but also body functions, thinking, immune response, healing,
hormone production and more. The cells are built of proteins and everything which occurs in the
human body is realized by proteins. Proteins are the substances of life. In detail they are

enzymes catalyzing chemical reactions,

sensors (pH value, chemical concentration),

storage containers (fat),

transporters of molecules (hemoglobin transports O2),

structural components of the tissue (tubulin, actin collagen),

mechanical devices (muscle contraction, transport),

communication machines in the cell (decoding information, transcription, translation),
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Figure 1.1: Prokaryotic cells of bacterium and cynaophyte (photosynthetic bacteria). Figure
from http://www.zipworld.com.au/~ataraxy/CellBiology/chapter1/cell_chapter1.

html.

http://www.zipworld.com.au/~ataraxy/CellBiology/chapter1/cell_chapter1.html
http://www.zipworld.com.au/~ataraxy/CellBiology/chapter1/cell_chapter1.html
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Figure 1.2: Eukaryotic cell of a plant.

markers

gene regulation parts (binding to nucleic acids),

hormones and their receptors (regulation of target cells),

components of the defense and immune system (antibodies),

neurotransmitter and their receptors,

nano-machines for building, reconfiguring, and reassembling proteins, and more.

All information about the proteins and, therefore, about the organism is coded in the DNA
(→). The DNA decoding is famous under the term “human genome project” – as all information
about an organism is called genome (see Fig. 1.3 for a cartoon of this project).

1.2 Central Dogma of Molecular Biology

The central dogma of molecular biology says "DNA makes RNA makes protein". Therefore,
all knowledge about life and its building blocks, the proteins, is coded in the DNA. RNA is the
blueprint from parts of the DNA which is read out to be supplied to the protein construction site.
The making of RNA from DNA is called “transcription” and the making of protein from RNA is
called “translation”. In eukaryotic cells the DNA is located in the nucleus, but also chloroplasts
(in plants) and mitochondria contain DNA.



1.3. DNA 5

Figure 1.3: Cartoon of the “human genome project”.

The part of the DNA which codes a single protein is called “gene”. However scientist were
forced to modify the statement "one gene makes one protein" in two ways. First, some proteins
consist of substructures each of which is coded by a separate gene. Secondly, through alternative
splicing (→) one gene can code for different proteins.

1.3 DNA

The deoxyribonucleic acid (DNA) codes all information of life (with some viral exceptions where
information is coded in RNA) and represents the human genome. It is a double helix where one
helix is a sequence of nucleotides with a deoxyribose (see Fig. 1.5). The single strand DNA ends
are called 5’ and 3’ ("five prime" and "three prime"), which refers to the sides of the sugar molecule
with 5’ at the phosphates side and 3’ at the hydroxyl group. The DNA is written from 5’ to 3’ and
upstream means towards the 5’ end and downstream towards the 3’ end.

There exist 5 nucleotides (see Fig. 1.6): adenine (A), thymine (T), cytosine (C), guanine (G),
and uracil (U). The first 4 are found in the DNA whereas uracil is used in RNA instead of thymine.
They form two classes: the purines (A, G) and the pyrimidines (C, U, T). The nucleotides are often
called nucleobases.

In the double helix there exist hydrogen bonds between a purine and a pyrimidine where the
pairing is A–T and C–G (see Fig. 1.7 and Fig. 1.8). These pairings are called base pairs. Therefore
each of the two helices of the DNA is complementary to the other (i.e. the code is redundant). The
DNA uses a 4-digit alphabet similar to computer science where a binary alphabet is used.

The DNA is condensed in the nucleus through various processes and many proteins resulting
in chromosomes (humans have 23). The DNA wraps around histones (special proteins) resulting
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Figure 1.4: Central dogma is depicted.
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Figure 1.5: The deoxyribonucleic acid (DNA) is depicted.
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Figure 1.6: The 5 nucleotides.

Figure 1.7: The hydrogen bonds between base pairs.
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Figure 1.8: The base pairs in the double helix.

Figure 1.9: The DNA is depicted in detail.
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Figure 1.10: The storage of the DNA in the nucleus. (1) DNA, (2) chromatin (DNA with his-
tones), (3) chromatin strand, (4) chromatin (2 copies of the DNA linked at the centromere), (5)
chromosome.

in a structure called chromatin. Two strands of chromatin linked together at the centromere give a
chromosome. See Fig. 1.10 and Fig. 1.11.

However, the DNA of humans differs from person to person as single nucleotides differ which
makes us individual. Our characteristics as eye or hair color, tall or not, ear or nose form, skills, etc
is determined by small differences in our DNA. The DNA and also its small differences to other
persons is inherited from both parents by 23 chromosomes. An exception is the mitochondrial
DNA, which is inherited only from the mother.

If a variation in the DNA at the same position occurs in at least 1% of the population then it
is called a single nucleotide polymorphism (SNP – pronounced snip). SNPs occur all 100 to 300
base pairs. Currently many research groups try to relate preferences for special diseases to SNPs
(schizophrenia or alcohol dependence).

Note, the DNA double helix is righthanded, i.e. twists as a "right-hand screw" (see Fig. 1.12
for an error).
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Figure 1.11: The storage of the DNA in the nucleus as cartoon.

Figure 1.12: The DNA is right-handed.
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1.4 RNA

Like the DNA the ribonucleic acid (RNA) is a sequence of nucleotides. However in contrast to
DNA, RNA nucleotides contain ribose rings instead of deoxyribose and uracil instead of thymine
(see Fig. 1.13). RNA is transcribed from DNA through RNA polymerases (enzymes) and further
processed by other proteins.

Very different kinds of RNA exist:

Messenger RNA (mRNA): first it is translated from the DNA (eukaryotic pre-mRNA), after
maturation (eukaryote) it is transported to the protein production site, then it is transcribed
to a protein by the ribosome; It is a “blueprint” or template in order to translate genes into
proteins which occurs at a huge nano-machine called ribosome.

Transfer RNA (tRNA): non-coding small RNA (74-93 nucleotides) needed by the ribosome
to translate the mRNA into a protein (see Fig. 1.14); each tRNA has at the one end comple-
mentary bases of a codon (three nucleotides which code for a certain amino acid) and on the
other end an amino acid is attached; it is the basic tool to translate nucleotide triplets (the
codons) into amino acids.

Double-stranded RNA (dsRNA): two complementary strands, similar to the DNA (some-
times found in viruses)

Micro-RNA (miRNA): two approximately complementary single-stranded RNAs of 20-25
nucleotides transcribed from the DNA; they are not translated, but build a dsRNA shaped as
hairpin loop which is called primary miRNA (pri-miRNA); miRNA regulates the expression
of other genes as it is complementary to parts of mRNAs;

RNA interference (RNAi): fragments of dsRNA interfere with the expression of genes which
are at some locations similar to the dsRNA

Small/short interfering RNA (siRNA): 20-25 nucleotide-long RNA which regulates expres-
sion of genes; produced in RNAi pathway by the enzyme Dicer (cuts dsRNA into siRNAs).

Non-coding RNA (ncRNA), small RNA (sRNA), non-messenger RNA (nmRNA), functional
RNA (fRNA): RNA which is not translated

Ribosomal RNA (rRNA): non-coding RNAs which form the ribosome together with various
proteins

Small nuclear RNA (snRNA): non-coding, within the nucleus (eukaryotic cells); used for
RNA splicing

Small nucleolar RNA (snoRNA): non-coding, small RNA molecules for modifications of
rRNAs

Guide RNA (gRNA): non-coding, only in few organism for RNA editing

Efference RNA (eRNA): non-coding, intron sequences or from non-coding DNA; function is
assumed to be regulation of translation
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Figure 1.13: The difference between RNA and DNA is depicted.
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Figure 1.14: Detailed image of a tRNA.

Signal recognition particle (SRP): non-coding, RNA-protein complex; attaches to the mRNA
of proteins which leave the cell

pRNA: non-coding, observed in phages as mechanical machines

tmRNA: found in bacteria with tRNA- and mRNA-like regions

1.5 Transcription

Transcription enzymatically copies parts of the DNA sequence by RNA polymerase to a com-
plementary RNA. There are 3 types of RNA polymerase denoted by I, II, and III responsible for
rRNA, mRNA, and tRNA, respectively. Transcription reads the DNA from the 3’ to 5’ direction,
therefore the complementary RNA is produced in the 5’ to 3’ direction (see Fig. 1.15).
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Figure 1.15: The transcription from DNA to RNA is depicted.

Transcription consists of 3 phases: initiation, elongation and termination. We will focus on
the eukaryotic transcription (the prokaryotic transcription is different, but easier)

1.5.1 Initiation

The start is marked by a so-called promoter region, where specific proteins can bind to. The core
promoter of a gene contains binding sites for the basal transcription complex and RNA polymerase
II and is within 50 bases upstream of the transcription initiation site. It is normally marked through
a TATA pattern to which a TATA binding protein (TBP) binds. Subsequently different proteins
(transcription factors) attach to this TBP which is then recognized by the polymerase and the
polymerase starts the transcription. The transcription factors together with polymerase II are the
basal transcriptional complex (BTC).

Some promoters are not associated with the TATA pattern. Some genes share promoter regions
and are transcribed simultaneously. The TATA pattern is more conservative as TATAAA or TATATA
which means it is observed more often than the others.

For polymerase II the order of the TBP associated factors is as follows:

TFIID (Transcription Factor for polymerase II D) binds at the TATA box

TFIIA holds TFIID and DNA together and enforces the interactions between them

TFIIB binds downstream of TFIID

TFIIF and polymerase II come into the game; the σ-subunit of the polymerase is important
for finding the promoter as the DNA is scanned, but will be removed later (see Fig. 1.16)

TFIIE enters and makes polymerase II mobile

TFIIH binds and identifies the correct template strand, initiates the separation of the two
DNA strands through a helicase which obtains energy via ATP, phosphorylates one end of
the polymerase II which acts as a starting signal, and even repairs damaged DNA
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Figure 1.16: The interaction of RNA polymerase and promoter for transcription is shown. (1) The
polymerase binds at the DNA and scans it until (2) the promoter is found. (3) polymerase/promoter
complex is built. (4) Initiation of the transcription. (5) and (6) elongation with release of the
polymerase σ-subunit.
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TFIIH and TFIIE strongly interact with one another as TFIIH requires TFIIE to unwind the
promoter.

Also the initiation is regulated by interfering proteins and inhibition of the chromatin structure.
Proteins act as signals and interact with the promoter or the transcription complex and prevent
transcription or delay it (see Fig. 1.17). The chromatin structure is able to stop the initiation of the
transcription by hiding the promoter and can be altered by changing the histones.

1.5.2 Elongation

After initiation the RNA is actually written. After the generation of about 8 nucleotides the σ-
subunit is dissociated from polymerase.

There are differnent kinds of elongation promoters like sequence-dependent arrest affected
factors, chromatin structure oriented factors influencing the histone (phosphorylation, acetylation,
methylation and ubiquination), or RNA polymerase II catalysis improving factors.

The transcription can be stimulated e.g. through a CAAT pattern to which other transcription
factors bind. Further transcription is regulated via upstream control elements (UCEs, 200 bases
upstream of initiation). But also far away enhancer elements exist which can be thousands of
bases upstream or downstream of the transcription initiation site. Combinations of all these control
elements regulate transcription.

1.5.3 Termination

Termination disassembles the polymerase complex and ends the RNA strand. It is a comparably
simple process which can be done automatically (see Fig. 1.18). The automatic termination occurs
because the RNA forms a 3D structure which is very stable (the stem-loop structure) through the
G–C pairs (3 hydrogen bonds) and the weakly bounded A–U regions dissociate.

1.6 Introns, Exons, and Splicing

Splicing modifies pre-mRNA, which is released after transcription. Non-coding sequences called
introns (intragenic regions) are removed and coding sequences called exons are glued together.
The exon sequence codes for a certain protein (see Fig. 1.19).

A snRNA complex, the spliceosome, performs the splicing, but some RNA sequences can
perform autonomous splicing. Fig. 1.20 shows the process of splicing, where nucleotide patterns
result in stabilizing a 3D conformation needed for splicing.

However pre-mRNA corresponding to a gene can be spliced in different ways (called alter-
native splicing), therefore a gene can code for different proteins. This is a dense coding because
proteins which share the same genetic subsequence (and, therefore, the same 3D substructure) can
be coded by a single gene (see Fig. 1.21). Alternative splicing is controlled by various signaling
molecules. Interestingly introns can convey old genetic code corresponding to proteins which are
no longer needed.
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Figure 1.17: Mechanism to regulate the initiation of transcription. Top (a): Repressor mRNA binds
to operator immediately downstream the promoter and stops transcription. Bottom (b): Repressor
mRNA is inactivate through a inducer and transcription can start.
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Figure 1.18: Automatic termination of transcription. (a) Region with Us is actual transcribed. (b)
The G–C base pairs form a RNA structure which is very stable through the G–C region (the stem-
loop structure). (c) the stable structure breaks up the unstable A–U region which is dissociated.
Transcription stops.
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Figure 1.19: Example for splicing: hemoglobin.
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Figure 1.20: Splicing event. Nucleotide pattern stabilize a 3D RNA complex which results in
splicing out the intron.



22 Chapter 1. Biological Basics

Figure 1.21: Example of alternative splicing. Different proteins are built from one gene through
splicing.
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Figure 1.22: A generic cartoon for an amino acid. “R” denotes the side chain which is different
for different amino acids – all other atoms are identical for all amino acids except for proline.

1.7 Amino Acids

An amino acid is a molecule with amino and carboxylic acid groups (see Fig. 1.22).

There exist 20 standard amino acids (see Fig. 1.23).

In the following properties of amino acids are given like water hating (hydrophobic) or water
loving (hydrophilic) (see Tab. 1.2 and Tab. 1.1), electrically charged (acidic = negative, basic =
positive) (see Tab. 1.1). The main properties are depicted in Fig. 1.24. Hydrophobic amino acids
are in the inside of the protein because it is energetically favorable. Only charged or polar amino
acids can build hydrogen bonds with water molecules (which are polar). If all molecules which
cannot form these hydrogen bonds with water are put together then more molecules can form
hydrogen bonds leading to an energy minimum. Think of fat on a water surface (soup) which
also forms clusters. During folding of the protein the main force is the hydrophobic effect which
also stabilizes the protein in its 3D structure. Other protein 3D-structure stabilizing forces are
salt-bridges which can exist between a positively and negatively charged amino acid. Further
disulfide bridges (Cys and Met) are important both for folding and 3D-structure stability. The
remaining 3D-structure forming forces are mainly hydrogen bonds between two backbones or two
side-chains as well as between backbone and side-chain.

A sequence of amino acids, i.e. residues, folds to a 3D-structure and is called protein. The
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Figure 1.23: All amino acids with their name, three and one letter code. The amino acids are
arranged according to their chemical properties.
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non-polar (hydrophobic)
glycine Gly G
alanine Ala A
valine Val V
leucine Leu L
isoleucine Ile I
methionine Met M
phenylalanine Phe F
tryptophan Trp W
proline Pro P

polar (hydrophilic)
serine Ser S
threonine Thr T
cysteine Cys C
tyrosine Tyr Y
asparagine Asn N
glutamine Gln Q

acidic (-,hydrophilic)
aspartic acid Asp D
glutamic acid Glu E

basic (+,hydrophilic)
lysine Lys K
arginine Arg R
histidine His H

Table 1.1: Main properties of amino acids. Cysteine and methionine are able to form disulfide
bonds through their sulfur atoms.

Figure 1.24: Classification of amino acids.
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SA Hyd Res Hyd side
Gly 47 1.18 0.0
Ala 86 2.15 1.0
Val 135 3.38 2.2
Ile 155 3.88 2.7

Leu 164 4.10 2.9
Pro 124 3.10 1.9
Cys 48 1.20 0.0
Met 137 3.43 2.3
Phe 39+155 3.46 2.3
Trp 37+199 4.11 2.9
Tyr 38+116 2.81 1.6
His 43+86 2.45 1.3
Thr 90 2.25 1.1
Ser 56 1.40 0.2
Gln 66 1.65 0.5
Asn 42 1.05 -0.1
Glu 69 1.73 0.5
Asp 45 1.13 -0.1
Lys 122 3.05 1.9
Arg 89 2.23 1.1

Table 1.2: Hydrophobicity scales (P.A.Karplus, Protein Science 6(1997)1302-1307)). “SA”:
Residue non-polar surface area [A2] (All surfaces associated with main- and side-chain carbon
atoms were included except for amide, carboxylate and guanidino carbons. For aromatic side
chains, the aliphatic and aromatic surface areas are reported separately.); “Hyd Res”: Estimated
hydrophobic effect for residue burial [kcal/mol]; “Hyd side”: Estimated hydrophobic effect for
side chain burial [kcal/mol] (The values are obtained from the previous column by subtracting the
value for Gly (1.18 kcal/mol) from each residue).
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First Second Position Third
(5’ end) (3’ end)

U C A G
UUU Phe UCU Ser UAU Tyr UGU Cys U

U UUC Phe UCC Ser UAC Tyr UGC Cys C
UUA Leu UCA Ser UAA Stop UGA Stop A
UUG Leu UCG Ser UAG Stop UGG Trp G
CUU Leu CCU Pro CAU His CGU Arg U

C CUC Leu CCC Pro CAC His CGC Arg C
CUA Leu CCA Pro CAA Gln CGA Arg A
CUG Leu CCG Pro CAG Gln CGG Arg G
AUU Ile ACU Thr AAU Asn AGU Ser U

A AUC Ile ACC Thr AAC Asn AGC Ser C
AUA Ile ACA Thr AAA Lys AGA Arg A
AUG Met ACG Thr AAG Lys AGG Arg G
GUU Val GCU Ala GAU Asp GGU Gly U

G GUC Val GCC Ala GAC Asp GGC Gly C
GUA Val GCA Ala GAA Glu GGA Gly A
GUG Val GCG Ala GAG Glu GGG Gly G

Table 1.3: The genetic code. AUG not only codes for methionine but serves also as a start codon.

property of amino acids to form chains is essential for building proteins. The chains are formed
through the peptide bonds. An amino acid residue results from peptide bonds of more amino acids
where a water molecule is set free (see Fig. 1.25). The peptide bonds are formed during translation
(→).

All proteins consist of these 20 amino acids. The specific 3D structure of the proteins and the
position and interaction of the amino acids results in various chemical and mechanical properties of
the proteins. All nano-machines are built from the amino acids and these nano-machines configure
them-selves if the correct sequence of amino acids is provided.

1.8 Genetic Code

The genetic code are instructions for producing proteins out of the DNA information. A protein
is coded in the DNA through a gene which is a DNA subsequence with start and end makers. A
gene is first transcribed into mRNA which is subsequently translated into an amino acid sequence
which folds to the protein. The genetic code gives the rules for translating a nucleotide sequence
into an amino acid sequence. These rules are quite simple because 3 nucleotides correspond to
one amino acid, where the nucleotide triplet is called codon. The genetic code is given in Tab. 1.3.
AUG and CUG serve as a start codon, however for prokaryotes the start codons are AUG, AUU and
GUG.
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Figure 1.25: Peptide bond between glycine and alanine. The COO side of glycine (the carboxyl
group) and the NH3 side (the amino group) of alanine form a C-NO bond which is called a peptide
bond. A water molecule is set free during forming the peptide bond.
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Figure 1.26: Large ribosomal subunit 50S from x-ray diffraction at 2.40 Å. Helices indicate posi-
tions of proteins and strands are the RNA.

1.9 Translation

After transcription the pre-mRNA is spliced and edited and the mature mRNA is transported out
of the nucleus into the cytosol (eukaryotes). The protein production machinery, the ribosome, is
located in the cytosol. The ribosome assembles the amino acid sequences out of the code written
on the mRNA. See Fig. 1.26 for a detailed image of the ribosome. It consists of two subunits 60S
and 40S in eukaryotes and 50S and 30S in bacteria.

As transcription also translation consists of 3 phases: initiation, elongation and termination.
The main difference between prokaryotic translation and eukaryotic translation is the initiation
(prokaryotic initiation has 3 factors whereas eukaryotic has 11 factors). In prokaryotes the trans-
lation initiation complex is built directly at the initiation site whereas in eukaryotes the initiation
site is searched for by a complex. We will focus on the prokaryotic transcription.

1.9.1 Initiation

The ribosomes have dissociated subunits if they are not active. On the mRNA the ribosome binding
site is marked by the pattern AGGAGGU which is called Shine-Dalgarno sequence. At this site the
initiation factors IF1, IF2 and IF3 as well as the 30S ribosomal subunit bind. The initiator tRNA
binds to the start codon. Then the 50S subunit binds to the complex and translation can start. See
Fig. 1.27 for a possible initiation process.
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Figure 1.27: Possible initiation of translation (prokaryotes). “E”,”P”,”A” denote exit, pepidyl,
aminoacyl binding sites, respectively. (1) initiation factors IF1 and IF3 bind to the 30S ribo-
some subunit, (2) initiation factor IF2, mRNA, and the 30S subunit form a complex at the Shine-
Dalgarno sequence before the start codon (mostly AUG). The initiator tRNA containing N-formyl
methionine (fMet) binds to the start codon, (3) the 50S subunit binds to the complex and IF1, IF2,
and IF3 are released.
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1.9.2 Elongation

Translation proceeds from the 5’ end to the 3’ end. Each tRNA which enters the ribosomal-
mRNA complex binds at the A-site at its specific codon. Then a peptide bond of the new amino
acid attached to the tRNA with the last amino acid of the existing polypeptide chain is built. The
tRNA is moved forward to the P-side waiting for the next tRNA to come in. If the tRNA’s amino
acid forms a peptide bond with the next amino acid then it moves to the E-site where it is released.
Figures 1.28 and 1.29 depict how the amino acid sequence is extended.

1.9.3 Termination

Termination is indicated by a stop codon (UAA, UAG, UGA) which enters the A-site. tRNAs cannot
bind to this codon however release factors bind at or near the A-site. Either the release factors or
the stop codon itself lead to the termination of translation. The amino acid chain is released and
the 70S ribosome becomes unstable and dissociates into its parts. See Fig. 1.30 for the translation
termination process. The 30S subunit may still be attached to the mRNA and searching for the
next Shine-Dalgarno pattern.

Translation occurs at the rate of transcription. E. coli ribosomes can synthesize a 300-residue
polypeptide in 20 seconds. A speed up of the translation occurs through multiple ribosomes at-
tached to the same mRNA (see Fig. 1.31 for an example).

1.10 Folding

The last stage of protein production is the folding of the polypeptide chain into the protein. Only
the correct folded protein can do its job and function correctly. Wrongly folded proteins lead to
Creutzfeld-Jacob disease, Alzheimer disease, Bovine spongiform encephalopathy (BSE or "mad
cow disease") and even the Parkinson disease may be caused by accumulations of misfolded pro-
teins where degradation is not possible.

Even large proteins always fold in their specific 3D structure, therefore folding is not a random
process but a complicated procedure with lot of interactions between the amino acids and water.
The folding pathways are sometimes not unique and possess intermediate states of folding.

The folding is sometimes assisted by special molecules called chaperones. There are different
types of chaperones some hide the hydrophobic regions of the protein to ensure correct folding
and avoid interference with other regions or proteins. Other chaperones act as containers where
proteins are correctly folded.

The folding of a protein takes from milliseconds up to minutes or hours.

One of the major tasks in bioinformatics is the prediction of the 3D structure from the amino
acid sequence. From the 3D structure the function of a protein can be guessed. More interesting
is the construction of new proteins and nano-machines based on the predicted 3D structure.

The main forces for stabilizing proteins and for correct folding were given previously at the
amino acid characteristics (hydrophobic effects, salt bridges, disulfide bridges, hydrogen bonds).
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Figure 1.28: The translation elongation is depicted. (1) Val-tRNA binds to the ribosome-mRNA
complex at the Val-coding region GUU, (2) the initial fMet forms a peptide bound with Val, (3) the
next codon codes Gly and Gly-tRNA enters the complex, (4) the stop codon UGA lead to a release
of the polypeptide.
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Figure 1.29: Translation elongation. (1) A specific tRNA with amino acid (aa6) binds at the A-site,
(2) amino acids aa5 and aa6 form a peptide bond, (3) the aa5 tRNA moves to the E-site and the aa6

tRNA to the P-site, (4) the tRNA from the E-site is released and another cycle begins.
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Figure 1.30: Termination of the translation. First a stop codon appears in the A-site, then release
factors bind at the A-site, the polypeptide chain is released and the ribosome dissociates.
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Figure 1.31: Translation with multiple ribosomes is depicted.
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Chapter 2

Bioinformatics Resources

This chapter describes resources on the WWW and data bases needed for bioinformatics research.

The European Molecular Biology Laboratory (EMBL – http://www.embl-heidelberg.

de) maintains a nucleotide data base which is daily updated but supplies many other sources for
bioinformatics, too. A spin-off is the European Bioinformatics Institute (EBI – http://www.

ebi.ac.uk/ebi_home.html) which maintains the SwissProt protein sequence data base and the
Sequence Retrieval System (SRS – http://srs.ebi.ac.uk/). The ExPASy site (http://www.
expasy.org/) integrates SwissProt & TrEMBL, PROSITE and some other resources (software,
education etc.).

At the University College London the Biomolecular Structure and Modeling (BSM) maintains
the PRINTS (protein fingerprints, i.e. multiple motifs) data base and the CATH protein structure
data base.

The National Center for Biotechnology Information (NCBI – http://www.ncbi.nlm.nih.

gov/) hosts the GenBank, the National Institutes of Health (NIH) DNA sequence data base and is
famous through its BLAST software including data bases like the NR (non-redundant sequences)
data base. NCBI also maintains the ENTREZ ( http://www.ncbi.nlm.nih.gov/Entrez/) sys-
tem which gives access to molecular biological data and articles. ENTREZ gives access to nu-
cleotide sequences from GenBank, EMBL, DDBJ (DNA data base of Japan) as well as to protein
sequences from SWISS-PROT, PIR, PRF, SEQDB, PDB.

Other important sites are the European EMBnet (http://www.embnet.org) and the Sanger
Centre founded by the Wellcome Trust (http://www.sanger.ac.uk/Info/).

2.1 Data Bases

Some of the important data bases are listed in Tab. 2.1. The most important DNA sequence
data bases are GenBank (USA – http://www.ncbi.nlm.nih.gov/genbank/), EMBL (Europe
– http://www.embl-heidelberg.de/), and DDBJ (Japan – http://www.ddbj.nig.ac.jp/).

GeneCards is a searchable, integrated, database of human genes that provides concise genomic
related information, on all known and predicted human genes.

NR is a data base mainly used with BLAST search and comprises all non-redundant (non-identical)
sequences. It contains more than 3 mio. sequences and for a BLAST or PSI-BLAST run a new se-
quence is compared with all sequences in the NR data base giving the best hits with their statistics.
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Name T U URL

EMBL N D http://www.embl-heidelberg.de/

GeneCards N ? http://www.genecards.org/

PDB P D http://www.rcsb.org/pdb/Welcome.do

SCOP P ? http://scop.berkeley.edu/

CATH P ? http://www.cathdb.info/

PIR P W http://pir.georgetown.edu/

SWISS-PROT P W http://www.expasy.org/sprot/

TrEMBL P W http://www.expasy.org/sprot/

Homstrad P W http://tardis.nibio.go.jp/homstrad/

InterPro P ? http://www.ebi.ac.uk/interpro/

NR P W ftp://ftp.ncbi.nih.gov/blast/db

Pfam P ? http://pfam.sanger.ac.uk/

UniProt P ? http://www.expasy.uniprot.org/

PROSITE P W http://www.expasy.org/prosite/

PRINTS P ? http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/

BLOCKS P ? http://blocks.fhcrc.org/

STRING P ? http://string-db.org

DAVID O ? http://david.abcc.ncifcrf.gov/

ChEMBL O ? https://www.ebi.ac.uk/chembl/

PubChem O ? http://pubchem.ncbi.nlm.nih.gov/

Table 2.1: Selected data bases. The column “T” stands for type and gives whether is nucleotide
(“N”) or protein (“P”) related or of other interest (“O”). “U” gives the update (“D” = daily,
“W”=weekly, “?” = unknown). The last column gives the URL.

http://www.embl-heidelberg.de/
http://www.genecards.org/
http://www.rcsb.org/pdb/Welcome.do
http://scop.berkeley.edu/
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http://www.expasy.org/sprot/
http://tardis.nibio.go.jp/homstrad/
http://www.ebi.ac.uk/interpro/
ftp://ftp.ncbi.nih.gov/blast/db
http://pfam.sanger.ac.uk/
http://www.expasy.uniprot.org/
http://www.expasy.org/prosite/
http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/
http://blocks.fhcrc.org/
http://string-db.org
http://david.abcc.ncifcrf.gov/
https://www.ebi.ac.uk/chembl/
http://pubchem.ncbi.nlm.nih.gov/
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Often used if instead of a sequence an average sequences should be processed (average of all se-
quences which are very similar to the sequences at hand). Processing the average of sequences has
given large improvements in protein secondary structure prediction and for protein classification.

PIR (Protein Information Resource) supplies protein sequences which are classified according to
the knowledge about the certain sequence and whether sequences are really translated. Another
protein sequence data base is SWISS-PROT with much information about the sequences. TrEMBL
gives sequences of all coding sequences in EMBL and is an add on to SWISS-PROT, where many
sequences will eventually go into SWISS-PROT.

PROSITE is a protein classification data base where proteins are classified according to motifs
(special amino acid patterns for the classes). Some classes in PROSITE do not possess a pattern
and a profile (a weighted pattern) is supplied. Many protein classes possess patterns like the 2FE-
2SE class were a cystine pattern is necessary to keep a ferro-sulfur structure (for electron transfer)
through disulfide bonds in place.

PRINTS is also a motif data base (fingerprints) where more than one motif is combined to identify
a protein class. The motifs are mostly found by multiple alignment.

BLOCKS is a data base of highly conserved regions and is related to PROSITE and PRINTS.

PFAM is a data base where alignments are coded in hidden Markov models (HMMs).

SCOP is a 3D protein structure data base where domains (separate substructures) are manually
classified into structural classes. SCOP is an important data base (besides CATH) for protein 3D
structure prediction. The hierarchy of the classification is “class”, “fold”, “superfamily”, “fam-
ily”. “Class” only separates helical, beta-sheet, or mixed structures, but contains special proteins
like membrane proteins, short proteins, or artificially constructed protein. “Fold” classes contain
domains with similar 3D structure (same secondary structure in the same arrangement). “Super-
family” contains proteins where a common evolutionary origin is probable based on sequence
similarities (remote homologous). “Families” contain proteins which are sufficiently similar (in
sequence or structure) to one another, in order to be sure that they are evolutionary related and
have in most cases the same function. The sequence data for SCOP can be obtained from the
ASTRAL data base.

CATH is like SCOP a 3D protein structure data base of domains. Main difference to SCOP
is that the classification is made automatically (even if manual inspections are done). Another
difference is the classification scheme, where the hierarchy is “class”, “architecture”, “topology”,
“homology”, “sequence”. “Class” is as in SCOP. “Architecture” classes contain proteins which
have similar 3D shape even if the secondary structure connection is different. “Topology” also
considers in contrast to “architecture” the connectivity of secondary elements and is similar to
the “fold” class of SCOP. “Homology” is similar to “family” of SCOP because an evolutionary
connection is highly probable. “Sequence” contains evolutionary closely related proteins with the
same function.

HOMSTRAD (Homologous STRucture Alignment Database) is a data base of structure-based
alignments for homologous protein families. Structures are classified into homologous families
and the sequences of each family are aligned on the basis of their 3D structures.

InterPro is a data base of protein families, domains and functional sites. It integrates information
from PROSITE, PRINTS, SMART, Pfam, ProDom, etc.
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UniProt (Universal Protein Resource) joins the information contained in Swiss-Prot, TrEMBL,
and PIR.

STRING is a database of known and predicted protein interactions. The interactions include direct
(physical) and indirect (functional) associations.

DAVID (Database for Annotation, Visualization and Integrated Discovery) provides a comprehen-
sive set of functional annotation tools for investigators to understand biological meaning behind
large list of genes.

ChEMBL is a manually curated chemical database of bioactive molecules with drug-like proper-
ties maintained by the EBI.

PubChem is a database of chemical molecules and their activities against biological assays main-
tained by the NCBI.

2.2 Software

Tab. 2.2 lists some software which is useful in bioinformatics research. These software is ba-
sic bioinformatics software. Important machine learning software can be found at http://www.
kernel-machines.org/ under “software” where the libSVM and torch package is recommended.
For feature selection the “spider” software can be used. For feature selection and classifica-
tion a special software, the PSVM software can be found under http://www.bioinf.jku.at/
software/psvm/.

EMBOSS is a toolbox with many useful bioinformatics programs (e.g. standard alignment pro-
grams) in source code.

Domainatrix is a toolbox based on EMBOSS for protein domain processing (SCOP) with many
useful programs.

BLAST is the standard local alignment program. Probably the most used bioinformatics program.
For averaging sequences PSI-BLAST is comfortable as it makes multiple runs through a data base
(e.g. NR) and provides a multiple alignment of the best hits.

PHRAP is a program for assembling shotgun DNA sequence data.

Babel is a cross-platform program and library which interconverts between many file formats used
in molecular modeling and computational chemistry.

BioPerl provides parsers, wrappers for other programs, GUI packages for other programs, a mi-
croarray package, etc. written in Perl.

ClustalW is the standard multiple alignment tool (also used by PSI-BLAST).

Modeller produces a 3D model of a sequence given template structures and a multiple alignment
of the sequence with the sequences of the template structures. To obtain the 3D model modeler op-
timizes the structure and satisfies spatial restraints. It is often used after threading spatial restraints
or protein classification to build the final model of the structure, where templates are identified by
threading or by protein classification.

Phylip is an (old) package for performing phylogenetic research.

Pymol is a very nice molecular viewer which allows to produce images, and movies. It can display
the sequence and if the user clicks on an element the according side chains appear in the 3D model.

http://www.kernel-machines.org/
http://www.kernel-machines.org/
http://www.bioinf.jku.at/software/psvm/
http://www.bioinf.jku.at/software/psvm/
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Software application URL

EMBOSS toolbox http://emboss.sourceforge.net

Domainatrix tools domains http://emboss.sourceforge.net/apps/cvs/embassy/domainatrix/

BLAST homology search http://www.ncbi.nlm.nih.gov/BLAST/

PHRAP shotgun DNA http://www.phrap.org/

Babel converts formats http://openbabel.sourceforge.net/wiki/Main_Page

BioPerl toolbox perl http://www.bioperl.org/

ClustalW multiple alig. ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/

modeller building model http://salilab.org/modeller/download_installation.html

phylip phylogenetics http://evolution.gs.washington.edu/phylip.html

pymol good viewer http://www.pymol.org/

rasmol fast viewer http://www.umass.edu/microbio/rasmol/

molscript nice images http://www.avatar.se/molscript/obtain_info.html

strap java toolbox http://www.charite.de/bioinf/strap/

tinker mol. dyn., fortran http://www.es.embnet.org/Services/MolBio/tinker/

biodesigner mol. dynamics http://www.pirx.com/biodesigner/download.html

threader threading http://bioinf.cs.ucl.ac.uk/threader/

loopp treading http://folding.chmcc.org/loopp/loopp.html

prospect threading http://compbio.ornl.gov/structure/prospect/

sspro4 sec. struc. http://contact.ics.uci.edu/download.html

psipred sec. struc.. http://bioinf.cs.ucl.ac.uk/psipred/

prof sec. struc. http://www.aber.ac.uk/~phiwww/prof/

jnet sec. struc. http://www.compbio.dundee.ac.uk/www-jpred/legacy/jnet/

PHD sec. struc. https://www.rostlab.org/papers/1996_phd/paper.html

DSSP sec. struc. f. 3D http://swift.cmbi.ru.nl/gv/dssp/

whatif mol. modelling http://swift.cmbi.kun.nl/whatif/

hmmer alignment HMM http://hmmer.janelia.org/

ProsaII struc. verf. https://prosa.services.came.sbg.ac.at/prosa.php

CE struc. alig. ftp://ftp.sdsc.edu/pub/sdsc/biology/CE/src/

DALI struc. alig. http://www.ebi.ac.uk/dali/

Table 2.2: Selection of software.

http://emboss.sourceforge.net
http://emboss.sourceforge.net/apps/cvs/embassy/domainatrix/
http://www.ncbi.nlm.nih.gov/BLAST/
http://www.phrap.org/
http://openbabel.sourceforge.net/wiki/Main_Page
http://www.bioperl.org/
ftp://ftp-igbmc.u-strasbg.fr/pub/ClustalW/
http://salilab.org/modeller/download_installation.html
http://evolution.gs.washington.edu/phylip.html
http://www.pymol.org/
http://www.umass.edu/microbio/rasmol/
http://www.avatar.se/molscript/obtain_info.html
http://www.charite.de/bioinf/strap/
http://www.es.embnet.org/Services/MolBio/tinker/
http://www.pirx.com/biodesigner/download.html
http://bioinf.cs.ucl.ac.uk/threader/
http://folding.chmcc.org/loopp/loopp.html
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http://contact.ics.uci.edu/download.html
http://bioinf.cs.ucl.ac.uk/psipred/
http://www.aber.ac.uk/~phiwww/prof/
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http://hmmer.janelia.org/
https://prosa.services.came.sbg.ac.at/prosa.php
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http://www.ebi.ac.uk/dali/


42 Chapter 2. Bioinformatics Resources

Rasmol is a molecular viewer which is simpler but faster than pymol and does not access the
graphic card directly.

Molscript is used to produce nice molecular images for printed papers.

Strap is a java written GUI interface to many programs like different viewers, alignment programs,
structural alignment programs.

Tinker is a molecular dynamics software written in fortran where the source code is available.
Many optimization tools are implemented to optimize the energy and to compute forces.

Biodesigner is a molecular modeling and visualization program. It is capable of creating homol-
ogous models of proteins, evaluate, and refine the models.

Threader (GenThreader) is a threading program which performed well in many tests.

LOOPP is a threading program where the source code is provided.

Prospect is a well known threading program.

SSpro4 is a secondary structure prediction program based on recursive neural networks from
Pierre Baldi. Source code is available.

PsiPred is a secondary structure prediction program where the source code is available. It is wildly
used and performed good in different competitions.

Prof is a secondary structure prediction program where the source code is available.

Jnet is a secondary structure prediction program where the source code is available.

PHD is a secondary structure prediction program.

DSSP is a program to compute secondary structure out of a 3D structure by determining the
hydrogen bonds.

Whatif is a molecular modeling package for proteins in water, ligands, nucleic acids, etc.

Hmmer is a hidden Markov model software package which transforms an alignment into an HMM
model. Advantage is that alignments can be coded in a probabilistic framework where the likeli-
hood of a new sequence to belong to the aligned sequences can be computed. The transformation
of alignments into HMMs is done via the HMMER software.

ProsaII allows to verify 3D structures of proteins and can pick out parts of the structure which
seem to be unlikely to be observed in nature.

CE is a widely used structural alignment program. Given two 3D protein structures, it superim-
poses them.

DALI is also a structural alignment program with a data base of alignments.

2.3 Articles

To find articles “PubMed” http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
is recommended, for machine learning and computer science articles http://www.researchindex.
org/ and for other articles http://scholar.google.com/.

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
http://www.researchindex.org/
http://www.researchindex.org/
http://scholar.google.com/
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organism size number av. gene chromo-
[mio bases] genes dens. [bases] somes

Homo sapiens
(human) 2900 30,000 1 / 100,000 46

Rattus norvegicus
(rat) 2,750 30,000 1 / 100,000 42

Mus musculus
(mouse) 2500 30,000 1 / 100,000 40

Drosophila melanogaster
(fruit fly) 180 13,600 1 / 9,000 8

Arabidopsis thaliana
(plant) 125 25,500 1 / 4000 10

Caenorhabditis elegans
(roundworm) 97 19,100 1 / 5000 12

Saccharomyces cerevisiae
(yeast) 12 6300 1 / 2000 32

Escherichia coli
(bacteria) 4.7 3200 1 / 1400 1

H. influenzae
(bacteria) 1.8 1700 1 / 1000 1

Table 2.3: Overview over some genomes.

Tab. 2.3 lists important steps in genome sequencing, where the size of the genome (number of
genes), the average number of genes per 100,000 bases and the number of chromosomes is given.
In the following the corresponding genome publication articles are listed.

Human
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the
human genome. Nature . 409 : 860-921. (15 February 2001)

Rat
Rat Genome Sequencing Project Consortium. Genome Sequence of the Brown Norway Rat Yields
Insights into Mammalian Evolution. Nature . 428 : 493-521. (1 April 2004)

Mouse
Mouse Genome Sequencing Consortium. Initial sequencing and comparative analysis of the
mouse genome. Nature . 420 : 520 -562. (5 December 2002)

Fruit Fly
M. D. Adams, et al. The genome sequence of Drosophila melanogaster . Science . 287 : 2185-95.
(24 March 2000)

Arabidopsis - First Plant Sequenced
The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant
Arabidopsis thaliana . Nature 408 : 796-815. (14 December 2000)

Roundworm - First Multicellular Eukaryote Sequenced
The C. elegans Sequencing Consortium.Genome sequence of the nematode C. elegans : A plat-
form for investigating biology. Science . 282 : 2012-8. (11 December 1998)
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Yeast
A. Goffeau, et al. Life with 6000 genes. Science . 274 : 546, 563-7. (25 October 1996)

Bacteria - E. coli
F. R. Blattner, et al. The complete genome sequence of Escherichia coli K-12. Science . 277 :
1453-1474. (5 September 1997)

Bacteria - H. influenzae - First Free-living Organism to be Sequenced
R. D. Fleischmann, et al. Whole-genome random sequencing and assembly of Haemophilus in-
fluenzae Rd. Science . 269 : 496-512. (28 July 1995)



Chapter 3

Pairwise Alignment

This chapter introduces and discusses pairwise alignment methods. We consider sequences of
amino acids but everything can be transferred to sequences of nucleotides.

3.1 Motivation

The cells of most organisms function in a similar way. The proteins produced in cells of different
species are very similar to one another because they must perform the same tasks like keeping up
the energy supply by transforming and transporting energy (glucose cycles, anaerobic respiration,
tricarboxylic acid cycle – the TCA, oxidative phosphorylation – see Fig. 3.1 for an overview of
pathways).

Other pathways in living organisms include fatty acid oxidation, thin acid oxidation, gluco-
neogenesis, HMG-CoA reductase, pentose phosphate, porphyrin synthesis, or urea cycle. Many
proteins have the same task in different organism like detecting of damage of and repairing the
DNA (housekeeping proteins), carrying substances, membrane proteins, chromosomal proteins,
collagens (tissue making), GTP binding proteins, gatekeeper proteins (ER entrance and exit con-
trol), molecular chaperones, ribosomal proteins, nucleoproteins, RNA binding proteins, receptor
proteins, regulatory proteins, zinc finger proteins (a zinc ion is kept), etc.

If a new sequence is obtained from genome sequencing then the first step is to look for
similarities to known sequences found in other organisms. If the function/structure of similar
sequences/proteins is known then it is highly likely that the new sequence corresponds to a pro-
tein with the same function/structure. It was found that only about 1% of the human genes do
not have a counterpart in the mouse genome and that the average similarity between mouse and
human genes is 85%. Such similarities exist because all cells possess a common ancestor cell (a
mother cell). Therefore, in different organisms there may be mutations of amino acids in certain
proteins because not all amino acids are important for the function and can be replaced by amino
acids which have similar chemical characteristics without changing the function. Sometimes the
mutations are so numerous that it is difficult to find similarities. In some cases the relationship
is only at the structural basis but mutations changed the function of the protein (e.g. TIM barrel
proteins). However, even the structure is essential to infer the function.

The method to figure out functions of genes by similarities is called comparative genomics
or homology search. A homologous sequence is similar to another sequence where the similarity
stems from common ancestry.

45
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Figure 3.1: The main energetic pathways in the cell are depicted.
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The next sections will introduce similarity scoring schemes and alignment algorithms. In gen-
eral scoring schemes (error functions, cost functions, energy functions, penalty functions) should
be separated from optimization algorithms. Many optimization algorithms can be applied to differ-
ent scoring schemes but there exist also optimization algorithms which are designed for a special
scoring scheme. On the other hand scoring schemes can be optimized in different ways. Some
general optimization methods for discrete (non-differentiable) problems are random guessing (se-
lect a candidate solution, evaluate it, store it if it is the best up to now), exhaustive search (test all
candidates), genetic algorithms (better solutions survive and are mutated) or simulated annealing
(by introducing a temperature discrete problems are made continuous).

3.2 Sequence Similarities and Scoring

Given two sequences: how similar are they? This questions cannot be answered because it depends
on the context. Perhaps the sequences must have the same trend (stock market), contain the same
pattern (text), or have the same frequencies (speech) etc. to be similar to one another.

3.2.1 Identity Matrix

For biological sequences it is known how one sequence can mutate into another one. First there
are point mutations i.e. one nucleotide or amino acid is changed into another one. Secondly, there
are deletions, i.e. one element (nucleotide or amino acid) or a whole subsequence of element is
deleted from the sequence. Thirdly, there are insertions, i.e. one element or a subsequence is
inserted into the sequence. For our first approach the similarity of two biological sequences can
be expressed through the minimal number of mutations to transform one sequence into another
one. Are all mutations equally likely? No. Point mutations are more likely because an amino acid
can be replaced by an amino acid with similar chemical properties without changing the function.
Deletions and insertions are more prone to destroying the function of the protein, where the length
of deletions and insertions must be taken into account. For simplicity we can count the length
of insertions and deletions. Finally, we are left with simply counting the number of amino acids
which match in the two sequences (it is the length of both sequences added together and insertions,
deletions and two times the mismatches subtracted, finally divided by two).

Here an example:

BIOINFORMATICS BIOI�N-FORMATICS

−→
BOILING FOR MANICS B-OILINGFORMANICS

The hit count gives 12 identical letters out of the 14 letters of BIOINFORMATICS. The mutations
would be:

(1) delete I BOINFORMATICS

(2) insert LI BOILINFORMATICS

(3) insert G BOILINGFORMATICS

(4) change T into N BOILINGFORMANICS
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These two texts seem to be very similar. Note that insertions or deletions cannot be distinguished
if two sequences are presented (is the I deleted form the first string or inserted in the second?).
Therefore both are denoted by a “-” (note, two “-” are not matched to one another).

The task for bioinformatics algorithms is to find from the two strings (left hand side in above
example) the optimal alignment (right hand side in above example). The optimal alignment is the
arrangement of the two strings in a way that the number of mutations is minimal. The optimality
criterion scores matches (the same amino acid) with 1 and mismatches (different amino acids) with
0. If these scores for pairs of amino acids are written in matrix form, then the identity matrix is
obtained. The number of mutations is one criterion for optimality but there exist more (as seen
later). In general, an alignment algorithm searches for the arrangement of two sequences
such that a criterion is optimized. The sequences can be arranged by inserting “-” into the
strings and moving them horizontally against each other. For long sequences the search for an
optimal alignment can be very difficult.

One tool for representing alignments is the dot matrix, where one sequence is written horizon-
tally on the top and the other one vertically on the left. This gives a matrix where each letter of the
first sequence is paired with each letter of the second sequence. For each matching of letters a dot
is written in the according position in the matrix. Which pairs appear in the optimal alignment?
We will see later, that each path through the dot matrix corresponds to an alignment.

B I O I N F O R M A T I C S

B •
O • •
I • • •
L

I • • •
N •
G

F •
O • •
R •
M •
A •
N

I •
C •
S •

A simple game:
Rules: you can move horizontally “→”, vertically “↓”, and you can only move diagonal “↘” if
you at the position of a dot.
Task: make as many diagonal movements as possible if you run from the upper left corner to the
lower right corner.
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Figure 3.2: Dot plot of the human triosephosphate isomerase with the same protein in yeast, E.
coli, and archaeon. Yeast gives the best match as the diagonal is almost complete. E. coli has
some breaks in the diagonal. The archaeon shows the weakest similarity but the 3D structure and
function is the same in all proteins.

B I O I N F O R M A T I C S

B ↘
O → ↘ •
I • ↘ •
L ↓
I • • ↓ •
N ↘
G ↓
F ↘
O • ↘
R ↘
M ↘
A ↘
N ↓
I → ↘
C ↘
S ↘

The number of diagonal movements↘ corresponds to matches and count for the scoring, the
“→” correspond to a “-” in the vertical sequence, the “↓” to a “-” in the horizontal sequence and
a “→↓” or a “ ↓→” combination correspond to a mismatch. Therefore, each way through the matrix
corresponds to an alignment and each alignment can be expressed as a way through the matrix.

In above examples one can see that dots on diagonals correspond to matching regions. In Fig.
3.2 we show the dot matrices for comparing the human protein triosephosphate isomerase (TIM) to
the same protein in yeast, E. coli (bacteria), and archaeon. For yeast the diagonal is complete and
for E. coli small gaps are visible but the archaeon does not show an extended diagonal. Therefore,
the human TIM matches best with the yeast TIM, followed by the E. coli TIM and has lower
similarity to the archaeon TIM.

Scoring by counting the matches is the simplest way to score but there exist more advanced
methods. They address the fact that for some amino acids it is more likely that they mutate into
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each other because they share the same chemical properties (other mutations occur but do not
survive). These methods also take into account that the occurrence of a deletion /insertion must be
higher weighted then its length.

Here we only consider scoring through evaluation of pairs of amino acids (aligned amino
acids, one from the first and one from the second sequence). It may be possible to discover other
scoring schemes (taking the context into account; aligning pairs to pairs, etc.) but the optimization
methods would be complex, as we will see later.

Now we derive methods for evaluating the match of two amino acids, i.e. how much does
one match score. The intuitions says that the value should correspond to the probability of the
mutation of one amino acid into another one. Here and in the following we focus on amino acid
sequences but everything holds analogously for nucleotide sequences.

3.2.2 PAM Matrices

Dayhoff et. al (1978) introduced Percent or Point Accepted Mutation (PAM) matrices. PAM
corresponds to a unit of evolution, e.g. 1 PAM = 1 point mutation/100 amino acids and 250 PAM
= 250 point mutations/100 amino acids. The unit of evolution is therefore the time that on average
n% mutations occur at a certain position and survive. For PAM 250 1/5 of the amino acids remain
unchanged (homework: proof with PAM 1). PAM n is obtained from PAM 1 through n-times
matrix multiplication. PAM matrices are Markov matrices and have the form

P =


p1,1 p1,2 . . . p1,20

p2,1 p2,2 . . . p2,20
...

...
. . .

...
p20,1 p20,2 . . . p20,20

 , (3.1)

where pi,j = pj,i, pi,j ≥ 0 and
∑

j pi,j = 1.

The original PAM was obtained through the comparison of 71 blocks of subsequences which
had >85% mutual identity yielding to 1,572 changes. Phylogenetic trees (→) were constructed
for each of the 71 blocks. The average transition of amino acid i to amino acid j Ci,j per tree
is counted (see Tab. 3.2) and symmetrized (Ci,j = 1

2 (Ci,j + Cj,i)) because the trees are not
directed (note, that for two sequences the direction of point mutations is ambiguous).

From the constraint of summing to 1 we obtain

∀i : pi,i = 1 −
∑
j 6=i

pi,j . (3.2)

fi is the frequency of the presence of an amino acid in a protein (see Tab. 3.1). Further the
assumption of a stationary state was made for the PAM matrix computation

fi pi,j = fj pj,i , (3.3)

i.e. the amino acid distribution remains constant (this assumption is incorrect as found out re-
cently).
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Gly 0.089 Val 0.065 Arg 0.041 His 0.034
Ala 0.087 Thr 0.058 Asn 0.040 Cys 0.033
Leu 0.085 Pro 0.051 Phe 0.040 Tyr 0.030
Lys 0.081 Glu 0.050 Gln 0.038 Met 0.015
Ser 0.070 Asp 0.047 Ile 0.037 Trp 0.010

Table 3.1: Amino acid frequencies according to Dayhoff et. al (1978).

Under the assumption that a mutation takes place, the probability that amino acid i mutates
into amino acid j is

ci,j =
Ci,j∑
l,l 6=iCi,l

, (3.4)

the frequency Ci,j of changing i to j divided by the number of changes of amino acid i. Note, that
the time scale of one mutation is not taken into account.

The mutation probability pi,j should be proportional to ci,j up to a factor mi “the relative
mutability” of amino acid i. mi accounts for the fact that different amino acids have different
mutation rates. Using above constraints we will determine the value of mi.

We set

pi,j = mi ci,j = mi
Ci,j∑
l,l 6=iCi,l

(3.5)

and insert this in the steady state assumption

fi pi,j = fj pj,i (3.6)

leading to (note Ci,j = Cj,i)

fi mi
Ci,j∑
l,l 6=iCi,l

= fj mj
Ci,j∑
l,l 6=j Cj,l

. (3.7)

We obtain

mi
fi∑

l,l 6=iCi,l
= mj

fj∑
l,l 6=j Cj,l

:= c . (3.8)

Using the value c in the right hand side of the last equation and solving for mi gives

mi = c

∑
l,l 6=iCi,l

fi
. (3.9)

We now insert mi into the equation for pi,j :

pi,j = c

∑
l,l 6=iCi,l

fi

Ci,j∑
l,l 6=iCi,l

= c
Ci,j
fi

. (3.10)
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A R N D C Q E G H I L K M F P S T W Y V
A
R 30
N 109 17
D 154 0 532
C 33 10 0 0
Q 93 120 50 76 0
E 266 0 94 831 0 422
G 579 10 156 162 10 30 112
H 21 103 226 43 10 243 23 10
I 66 30 36 13 17 8 35 0 3
L 95 17 37 0 0 75 15 17 40 253
K 57 477 322 85 0 147 104 60 23 43 39
M 29 17 0 0 0 20 7 7 0 57 207 90
F 20 7 7 0 0 0 0 17 20 90 167 0 17
P 345 67 27 10 10 93 40 49 50 7 43 43 4 7
S 772 137 432 98 117 47 86 450 26 20 32 168 20 40 269
T 590 20 169 57 10 37 31 50 14 129 52 200 28 10 73 696
W 0 27 3 0 0 0 0 0 3 0 13 0 0 10 0 17 0
Y 20 3 36 0 30 0 10 0 40 13 23 10 0 260 0 22 23 6
V 365 20 13 17 33 27 37 97 30 661 303 17 77 10 50 43 186 0 17

Table 3.2: Cumulative Data for computing PAM with 1572 changes.

The free parameter c must be chosen to obtain 1 mutation per 100 amino acids, i.e.

∑
i

fi (1 − pi,i) =
∑
i

∑
j 6=i

fi pi,j = (3.11)

c
∑
i

∑
j 6=i

fi
Ci,j
fi

= c
∑
i

∑
j 6=i

Ci,j = 1/100 ,

therefore

c = 1/

100
∑
i

∑
j 6=i

Ci,j

 . (3.12)

Finally we obtain an expression for pi,j :

pi,j =
Ci,j

100 fi
∑

i

∑
j 6=iCi,j

. (3.13)

The result of this computation is presented as the PAM 1 matrix in Tab. 3.3 and Tab. 3.4 shows the
according PAM 250 matrix.

Now we want to compute the scoring matrix. Towards this end we want to compare a pairing
resulting from mutations occurring in nature with the probability of a random pairing. The prob-
ability of a mutation in nature is fi pi,j , i.e. the probability that amino acid i is present multiplied
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A R N D C Q E G H I L K M F P S T W Y V
A 9867 2 9 10 3 8 17 21 2 6 4 2 6 2 22 35 32 0 2 18
R 1 9913 1 0 1 10 0 0 10 3 1 19 4 1 4 6 1 8 0 1
N 4 1 9822 36 0 4 6 6 21 3 1 13 0 1 2 20 9 1 4 1
D 6 0 42 9859 0 6 53 6 4 1 0 3 0 0 1 5 3 0 0 1
C 1 1 0 0 9973 0 0 0 1 1 0 0 0 0 1 5 1 0 3 2
Q 3 9 4 5 0 9876 27 1 23 1 3 6 4 0 6 2 2 0 0 1
E 10 0 7 56 0 35 9865 4 2 3 1 4 1 0 3 4 2 0 1 2
G 21 1 12 11 1 3 7 9935 1 0 1 2 1 1 3 21 3 0 0 5
H 1 8 18 3 1 20 1 0 9912 0 1 1 0 2 3 1 1 1 4 1
I 2 2 3 1 2 1 2 0 0 9872 9 2 12 7 0 1 7 0 1 33
L 3 1 3 0 0 6 1 1 4 22 9947 2 45 13 3 1 3 4 2 15
K 2 37 25 6 0 12 7 2 2 4 1 9926 20 0 3 8 11 0 1 1
M 1 1 0 0 0 2 0 0 0 5 8 4 9874 1 0 1 2 0 0 4
F 1 1 1 0 0 0 0 1 2 8 6 0 4 9946 0 2 1 3 28 0
P 13 5 2 1 1 8 3 2 5 1 2 2 1 1 9926 12 4 0 0 2
S 28 11 34 7 11 4 6 16 2 2 1 7 4 3 17 9840 38 5 2 2
T 22 2 13 4 1 3 2 2 1 11 2 8 6 1 5 32 9871 0 2 9
W 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 9976 1 0
Y 1 0 3 0 3 0 1 0 4 1 1 0 0 21 0 1 1 2 9945 1
V 13 2 1 1 3 2 2 3 3 57 11 1 17 1 3 2 10 0 2 9901

Table 3.3: 1 PAM evolutionary distance (times 10000).

A R N D C Q E G H I L K M F P S T W Y V
A 13 6 9 9 5 8 9 12 6 8 6 7 7 4 11 11 11 2 4 9
R 3 17 4 3 2 5 3 2 6 3 2 9 4 1 4 4 3 7 2 2
N 4 4 6 7 2 5 6 4 6 3 2 5 3 2 4 5 4 2 3 3
D 5 4 8 11 1 7 10 5 6 3 2 5 3 1 4 5 5 1 2 3
C 2 1 1 1 52 1 1 2 2 2 1 1 1 1 2 3 2 1 4 2
Q 3 5 5 6 1 10 7 3 7 2 3 5 3 1 4 3 3 1 2 3
E 5 4 7 11 1 9 12 5 6 3 2 5 3 1 4 5 5 1 2 3
G 12 5 10 10 4 7 9 27 5 5 4 6 5 3 8 11 9 2 3 7
H 2 5 5 4 2 7 4 2 15 2 2 3 2 2 3 3 2 2 3 2
I 3 2 2 2 2 2 2 2 2 10 6 2 6 5 2 3 4 1 3 9
L 6 4 4 3 2 6 4 3 5 15 34 4 20 13 5 4 6 6 7 13
K 6 18 10 8 2 10 8 5 8 5 4 24 9 2 6 8 8 4 3 5
M 1 1 1 1 0 1 1 1 1 2 3 2 6 2 1 1 1 1 1 2
F 2 1 2 1 1 1 1 1 3 5 6 1 4 32 1 2 2 4 20 3
P 7 5 5 4 3 5 4 5 5 3 3 4 3 2 20 6 5 1 2 4
S 9 6 8 7 7 6 7 9 6 5 4 7 5 3 9 10 9 4 4 6
T 8 5 6 6 4 5 5 6 4 6 4 6 5 3 6 8 11 2 3 6
W 0 2 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 55 1 0
Y 1 1 2 1 3 1 1 1 3 2 2 1 2 15 1 2 2 3 31 2
V 7 4 4 4 4 4 4 4 5 4 15 10 4 10 5 5 5 72 4 17

Table 3.4: 250 PAM evolutionary distance (times 100).
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A R N D C Q E G H I L K M F P S T W Y V
A 2
R -2 6
N 0 0 2
D 0 -1 2 4
C -2 -4 -4 -5 12
Q 0 1 1 2 -5 4
E 0 -1 1 3 -5 2 4
G 1 -3 0 1 -3 -1 0 5
H -1 2 2 1 -3 3 1 -2 6
I -1 -2 -2 -2 -2 -2 -2 -3 -2 5
L -2 -3 -3 -4 -6 -2 -3 -4 -2 2 6
K -1 3 1 0 -5 1 0 -2 0 -2 -3 5
M -1 0 -2 -3 -5 -1 -2 -3 -2 2 4 0 6
F -4 -4 -4 -6 -4 -5 -5 -5 -2 1 2 -5 0 9
P 1 0 -1 -1 -3 0 -1 -1 0 -2 -3 -1 -2 -5 6
S 1 0 1 0 0 -1 0 1 -1 -1 -3 0 -2 -3 1 3
T 1 -1 0 0 -2 -1 0 0 -1 0 -2 0 -1 -2 0 1 3
W -6 2 -4 -7 -8 -5 -7 -7 -3 -5 -2 -3 -4 0 -6 -2 -5 17
Y -3 -4 -2 -4 0 -4 -4 -5 0 -1 -1 -4 -2 7 -5 -3 -3 0 10
V 0 -2 -2 -2 -2 -2 -2 -1 -2 4 2 -2 2 -1 -1 -1 0 -6 -2 4

Table 3.5: Log-odds matrix for PAM 250.

with the probability that it is mutated into amino acid j. The probability of randomly selecting a
pair (with independent selections) is fi fj . The likelihood ratio is

fi pi,j
fi fj

=
pi,j
fj

=
pj,i
fi

. (3.14)

If each position is independent of the other positions then the likelihood ratio for the whole se-
quence is the product

∏
k

fik pik,jk
fik fjk

=
∏
k

pik,jk
fjk

. (3.15)

To handle this product and avoid numerical problems the logarithm is taken and we get a scoring
function

∑
k

log

(
pik,jk
fjk

)
. (3.16)

The values log
(
pik,jk
fjk

)
are called “log-odds-scores” after they are multiplied by a constant and

rounded. The “log-odds-scores” for the PAM 250 are summarized in Tab. 3.5. Positive values
of the “log-odds-scores” mean that the corresponding pair of amino acids appears more often in
aligned homologous sequences than by chance (vice versa for negative values).

For a detailed example of how to calculate the PAM 1 matrix see Appendix C.
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3.2.3 BLOSUM Matrices

The PAM matrices are derived from very similar sequences and generalized to sequences which
are less similar to each other by matrix multiplication. However, this generalization is not verified.

Henikoff and Henikoff (1992) derived scoring matrices, called “BLOSUM p” (BLOck SUb-
stitution Matrix). BLOSUM scoring matrices are directly derived from blocks with specified sim-
ilarity, i.e. different sequence similarities are not computed based on model assumptions which
may be incorrect. The data is based on the Blocks data base (see Chapter 2) where similar subse-
quences are grouped into blocks. Here p refers to the % identity of the blocks, e.g. BLOSUM 62 is
derived from blocks with 62 % identity (ungapped (→)). The default and most popular scoring
matrix for pairwise alignment is the BLOSUM 62 matrix.

Calculation the BLOSUM matrices:

1. Sequences with at least p% identity to each other are clustered. Each cluster generates
a frequency sequence (relative amino acid frequencies at every position). The frequency
sequence represents all sequences of one cluster and similar sequences are down-weighted.
In the following we consider only clusters with one sequence, i.e. there are no frequencies.
Frequencies will be treated later.

2. The (frequency) sequences are now compared to one another. Pairs of amino acid i and j are
counted by ci,j where amino acids are counted according to their frequency. If in column k
there are nki amino acids i and nkj amino acids j then the count for column k gives

cki,j =


(nk

i
2

)
for i = j

nki n
k
j for i > j

. (3.17)

Note, that
(nk

i
2

)
= 1

2

(
nki n

k
i − nki

)
, where the factor 1

2 accounts for symmetry and −nki
subtracts the counts of mutations of the sequence into itself.

3. Compute ci,j =
∑

k c
k
i,j and Z =

∑
i≥j ci,j = L N (N−1)

2 , where L is the sequence
length (column number) and N the number of sequences. Now the ci,j are normalized to
obtain the probability

qi,j =
ci,j
Z

. (3.18)

Finally we set qj,i = qi,j for i > j.

4. The probability of the occurrence of amino acid i is

qi = qi,i +
∑
j 6=i

qi,j
2
, (3.19)

the probability of i not being mutated plus the sum of the mutation probabilities. Note, that
qi,j is divided by 2 because mutations from i to j and j to i are counted in step 2.
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5. The likelihood ratios qi,i
q2i

and qi,j/2
qi qj

as well as the log-odds ratios

BLOSUMi,j =


2 log2

qi,i
q2i

for i = j

2 log2
qi,j

2 qi qj
for i 6= j

(3.20)

are computed. Note, that the BLOSUM values are actually rounded to integers.

Here an example for computing the BLOSUM matrix, where the first column gives the se-
quence number and the second the sequence:

1 NFHV

2 DFNV

3 DFKV

4 NFHV

5 KFHR

In this example we compute BLOSUM100 and keep even the identical subsequences 1 and 4
(which would form one sequence after clustering). Therefore we do not have clusters and each
amino acid obtains a unit weight. For example if we cluster the second and third sequence then
the frequency sequence is [D][F][0.5 N, 0.5 K][V]. For simplicity we do not cluster in the
following.

The values of ci,j are:

R N D H K F V
R 0 - - - - - -
N 0 1 - - - - -
D 0 4 1 - - - -
H 0 3 0 3 - - -
K 0 3 2 3 0 - -
F 0 0 0 0 0 10 -
V 4 0 0 0 0 0 6

Z = 4 · 5 · 4
2

= 40 =
∑
i≥j

ci,j (3.21)

The values of qi,j are:

R N D H K F V
R 0 0 0 0 0 0 0.1
N 0 0.025 0.1 0.075 0.075 0 0
D 0 0.1 0.025 0 0.05 0 0
H 0 0.075 0 0.075 0.075 0 0
K 0 0.075 0.05 0.075 0 0 0
F 0 0 0 0 0 0.25 0
V 0.1 0 0 0 0 0 0.15
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To compute the single amino acid probabilities qi, we compute it for N: 0.025 + 1
2 (0.1 + 0.075 + 0.075) =

0.15. The values of qi are:

R 0.05
N 0.15
D 0.1
H 0.15
K 0.1
F 0.25
V 0.2

The likelihood ratio values are:

R N D H K F V
R - - - - - - 5
N - 1.1 3.3 1.7 2.5 - -
D - 3.3 2.5 - 2.5 - -
H - 1.7 - 3.3 2.5 - -
K - 2.5 2.5 2.5 - - -
F - - - - - 4 -
V 5 - - - - - 3.8

The log-odds ratios are:

R N D H K F V
R - - - - - - 4.6
N - 0.3 3.5 1.5 2.6 - -
D - 3.5 3.4 - 2.6 - -
H - 1.5 - 3.4 2.6 - -
K - 2.6 2.6 2.6 - - -
F - - - - - 4 -
V 4.6 - - - - - 3.8

For the case with frequencies stemming from clustering we define fki,l as the frequency of
amino acid i in the k-th column for the l-th cluster.

cki,j =
∑

l,m:l 6=m
fki,l f

k
j,m = (3.22)

∑
l

fki,l
∑
m:m 6=l

fkj,m =

nki n
k
j −

∑
l

fki,l f
k
j,l ,

where

nki =
∑
l

fki,l (3.23)
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A R N D C Q E G H I L K M F P S T W Y V
A 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0
R -1 5 0 -2 -3 1 0 -2 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3
N -2 0 6 1 -3 0 0 0 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3
D -2 -2 1 6 -3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3
C 0 -3 -3 -3 9 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1
Q -1 1 0 0 -3 5 2 -2 0 -3 -2 1 0 -3 -1 0 -1 -2 -1 -2
E -1 0 0 2 -4 2 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2
G 0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3
H -2 0 1 -1 -3 0 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3
L -1 -2 -3 -4 -1 -2 -3 -4 -3 2 4 -2 2 0 -3 -2 -1 -2 -1 1
K -1 2 0 -1 -3 1 1 -2 -1 -3 -2 5 -1 -3 -1 0 -1 -3 -2 -2
M -1 -1 -2 -3 -1 0 -2 -3 -2 1 2 -1 5 0 -2 -1 -1 -1 -1 1
F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
S 1 -1 1 0 -1 0 0 0 -1 -2 -2 0 -1 -2 -1 4 1 -3 -2 -2
T 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0
W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3
Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1
V 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4

Table 3.6: BLOSUM62 scoring matrix.

and

cki,i =
1

2

((
nki

)2
−
∑
l

(
fki,l

)2
)

(3.24)

With these new formulas for cki,j all other computations remain as mentioned.

For a detailed example of how to calculate the BLOSUM75 matrix see Appendix C.

Tab. 3.6 shows the BLOSUM62 scoring matrix computed as shown above but on the BLOCKs
data base with ≥ 62% sequence identity.

If we compare the BLOSUM matrices with the PAM matrices then PAM100 ≈ BLOSUM90,
PAM120 ≈ BLOSUM80, PAM160 ≈ BLOSUM60, PAM200 ≈ BLOSUM52, and PAM250 ≈
BLOSUM45.

PAM assumptions are violated because positions are context dependent, i.e. one substitution
makes other substitutions more or less likely (dependency between mutations). Further, mutations
with low probability are not as well observed. Only the subsequences which are different in very
similar sequences are used to compute mutation probabilities. That may introduce a bias towards
mutations, i.e. only mutation-rich regions are used.

BLOSUM is not model based in contrast to PAM as it is empirically computed. For example,
it does not take the evolutionary relationships into account.
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These measurements of sequence similarities assume that the measurement is context inde-
pendent, i.e. point-wise. Therefore, the scoring can be expressed by a 20×20 matrix of pairwise
scores. However, more complex scores may be possible. Advantage of the simple scores is that
they can be used in algorithms which decompose the alignment in aligned amino acid pairs and,
therefore, are efficient.

3.2.4 Gap Penalties

In our example

BIOINFORMATICS BIOI�N-FORMATICS

−→
BOILING FOR MANICS B-OILINGFORMANICS

we inserted “-” into the strings to account for deletions and insertions. A maximal substring
consisting of “-” is called “gap”.

Obviously gaps are not desired as many gaps indicate a more remote relationship, i.e. more
deletions and insertions. Therefore gaps should contribute negatively to the score. But how should
gaps be penalized?

The first approach would be to equally penalize each “-”. A gap with length l and gap penalty
of d would give a linear score of

− l d . (3.25)

However, from a biological point of view neighboring insertions and deletions are not statisti-
cally independent from each other. Reason is that a single mutation event can delete whole sub-
strings or insert whole substrings. Those events are almost as likely as single insertions/deletions.
Another reason is that a sequence with introns and exons is matched against a measured sequence.
Here the first sequence may be obtained from genome sequencing and the second sequence may
be obtained by measuring proteins by X-ray or NMR. Missing introns should not be penalized by
their length.

On the other hand, a linear affine gap penalty function is computationally more efficient (as
we will see later the alignment computational cost is the product of the length of the strings for
linear affine gap penalties). Therefore the cost for a gap is computed as

− d − (l − 1) e , (3.26)
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where d is the gap open penalty and e is the gap extension penalty. The penalty for gaps in the
whole alignment is − d (numbergaps) − (number“−′′ − numbergaps) e.

The optimal alignment with BLOSUM62 as scoring matrix and with affine gap penalty d = 20
and e = 1 is the following:

RKFFVGGNWKMNGDKKSLNGAKLSADTEVVCGAPSIYLDF

|.||||||:| ||.|.:..:.|||...|:.|||:

RTFFVGGNFK-------LNTASIPENVEVVICPPATYLDY

Here “|” indicates a match, “:” similar amino acids, “.” less similar amino acids, and a blank a
gap. However the optimal alignment with affine gap penalty d = 1 and e = 1, i.e. a linear gap
penalty, is

RKFFVGGNWKMNGDKKSL--NGAKLSADTEVV-CGAPSIYLDF

|.||||||:|:| ..|: | : ||| | .|:.|||:

RTFFVGGNFKLN--TASIPEN---V----EVVIC-PPATYLDY

And the optimal alignment with affine gap penalty d = 4 and e = 4, i.e. a linear gap penalty with
higher penalties, is

RKFFVGGNWKMNGDKKSLNGAKLSADTEVVCGAPSIYLDF

|.||||||:|:| ..|: .: :.:. |:| .|:.|||:

RTFFVGGNFKLN--TASI--PE-NVEV-VIC-PPATYLDY

This shows that the number of gaps is minimized with the affine gap penalty with e < d. In the
last example the gaps are penalized more, therefore, fewer gaps appear in the optimal alignment.
Note that the gap penalty must be related with the BLOSUM62 scoring matrix.

The probability of amino acids aligned to a gap is assumed to be random, i.e. no amino acid
has a preference for a gap (is that true?). That means only the gap itself and its length may have
a certain probability. Assume that the likelihood of generating a gap is 2−d and the likelihood of
extending a gap is 2−e then the log2-likelihood of a gap is exactly the affine gap penalty. Therefore
the gap penalty also fits into the log-odds ratio framework. The expected scoring contribution of
gaps in random sequences is an additive constant for a certain sequence length. Therefore it can
be neglected in the log-odds ratios.

Until now only the evaluation of alignments, i.e. computing the similarity of sequences was
treated. To optimize the alignment is independent of the similarity measure, if it is a point-wise
measure. In the following algorithms for finding the optimal alignment are presented.

3.3 Alignment Algorithms

Alignment algorithms optimize the scoring of the sequences by pairing their amino acids and in-
serting gaps. The sequential order of the original amino acids must be kept. For pairing only
shifting the whole sequences and inserting gaps is allowed. The alignment algorithms can be
classified as being global or local. Global alignment algorithms optimize the alignment of two
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sequences whereas local alignment algorithms search for high scoring local alignments. Local
alignments may detect similarities even if the sequences have different lengths because of (alter-
native) splicing or mutations which glue domains together. Also remote homologous sequences
with conservative regions (important for function or structure) may be detected by local alignment.

3.3.1 Global Alignment — Needleman-Wunsch

If you remember our simple game then you know that this was an alignment task. How did you
solve it? One possibility would be to try out all possible alignments, compute their scores and
choose the best scoring alignment. However that would be too expensive. Assume both sequences
have the same length and let us assume that we only match subsequences to one another.

(
n
i

)
subsequences of length i exists for each sequence. The unmatched elements can be computed at
once. We have

(
n
i

)2 sequence pairs which must be evaluated in i steps. The complexity is

∑
i

(
n

i

)2

i ≥
∑
i

(
n

i

)2

=

(
2n

n

)
≈ (3.27)

√
4 π n (2n/e)2n/

(√
2π n (n/e)n

)2
= 22n/

√
π n .

The approximation stems from Stirling’s formula.

The naive approach does not work in practice because the number of operations increases
exponentially with the sequence length.

1970 Needleman and Wunsch used the idea of dynamic programming (cf. Bellman) to intro-
duce alignment algorithms which are practical.

3.3.1.1 Linear Gap Penalty

The idea is that the alignment of two sequences of length n andm can be reduced to the alignment
of two sequences of length (n − 1) and (m − 1) (match) or of two sequences of length (n − 1)
and m (gap in the second sequence) or of two sequences of length n and (m− 1) (gap in the first
sequence).

Consider two sequences ending with x and y, then the following cases are possible for the
optimal alignment:

match gap gap
x ?x x-

y y- ?y

Either the ends match or the end of one sequence is more to the right than the end of the other
sequence. In the latter case either the end of the first sequence is matched with a space or the end
of the second sequence.

We obtain immediately a recursion for the optimal score S(n,m) of two sequences x and y
with elements xi, 1 ≤ i ≤ n, and yj , 1 ≤ j ≤ m, respectively. d denotes the gap penalty and s
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the scoring function for two amino acids (s maps amino acid pairs to the corresponding entry in
the scoring matrix). The recursion is

S(i, j) = max


S(i− 1, j − 1) + s(xi, yj)
S(i− 1, j) − d
S(i, j − 1) − d

(3.28)

with start

S(0, 0) = 0 and S(−1, j) = S(i,−1) = −∞ . (3.29)

This leads to S(0, j) = − j d and S(i, 0) = − i d. The optimal score can be written in an n×m
matrix:

0 y1 . . . yj−1 yj . . . ym
0 S(0, 0) S(0, 1) . . . . . . S(0,m)
x1 S(1, 0) S(1, 1) . . . . . . S(1,m)
x2 . . . . . .
x3 . . . . . .

...
...

...
. . .

...
...

. . .
...

xi−1 S(i− 1, j − 1) S(i− 1, j)
↘ ↓

xi S(i, j − 1) → S(i, j)
...

...
...

. . .
...

...
. . .

...
xn S(n, 0) S(n, 1) . . . . . . S(n,m)

The table can be filled from the left upper corner to the right lower corner through the recursion.

During filling the matrix also the S(i − 1, j − 1), S(i − 1, j), S(i, j − 1) which was chosen
by the maximum and from which S(i, j) is computed should be memorized, e.g. in a variable
B(i, j) = (i−1, j−1) or (i−1, j) or (i, j−1). This variable allows to generate the alignment by
determining how S(n,m) is computed. The alignment is generated by backtracking with B(i, j)
starting from (n,m). During backtracking the alignment can be generated:

if B(i, j) =



(i− 1, j − 1) then print xi
yj

(i− 1, j) then print xi
−

(i, j − 1) then print −
yj

. (3.30)

Alg. 3.1 shows a pseudo code of the Needleman-Wunsch global alignment algorithm with
linear gap penalty. It can be seen that the algorithm has time and memory complexity of O(n m).
An example (from above) for the backtracking algorithm is shown in tables 3.7 and 3.8.

For a detailed example of the Needleman-Wunsch global alignment algorithm with linear
gap penalty see Appendix C.
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Algorithm 3.1 Needleman-Wunsch with linear gap

Input: two sequences x and y with length n and m, respectively; scoring matrix s, gap penalty d
Output: optimal global alignment and its score

BEGIN INITIALIZATION
S(0, 0) = 0, S(0, j) = − j d, 1 ≤ j ≤ m, and S(i, 0) = − i d, 1 ≤ i ≤ n

END INITIALIZATION

BEGIN PROCEDURE
for 1 ≤ i ≤ n do

for 1 ≤ j ≤ m do
a(i − 1, j − 1) = S(i − 1, j − 1) + s(xi, yj) , a(i − 1, j) = S(i − 1, j) − d,
a(i, j − 1) = S(i, j − 1) − d
S(i, j) = max{a(i− 1, j − 1), a(i− 1, j), a(i, j − 1)}
B(i, j) = arg max{a(i− 1, j − 1), a(i− 1, j), a(i, j − 1)}

end for
end for
print “Score: ” S(n,m)

(i, j) = (n,m)
while (i, j) 6= (0, 0) do

if B(i, j) =



(i− 1, j − 1) then print xi
yj

(i− 1, j) then print xi
−

(i, j − 1) then print −
yj

(i, j) = B(i, j)
end while

END PROCEDURE
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3.3.1.2 Affine Gap Penalty

The problem for affine gap penalties is that long term dependencies appear. For linear gap penal-
ties we considered

match gap gap
x ?x x-

y y- ?y

to derive the recursion. However, for affine gap penalties introducing a gap at the end of a sequence
implies a gap opening event earlier in the sequence. Therefore all earlier gap opening events must
be considered:

S(i, j) = max


S(i− 1, j − 1) + s(xi, yj)
S(i− k, j) − d − (k − 1) e , 1 ≤ k ≤ i
S(i, j − k) − d − (k − 1) e , 1 ≤ k ≤ j

. (3.31)

For two sequences of length n the complexity is O
(
n3
)
, because all S(i, j) must be considered

(O
(
n2
)
) and a consideration is of order O (n) through checking all previous gap openings.

The idea to make the algorithm with affine gap penalties efficient is to propagate 3 matrices:

Gd(i, j) best score up to position (i, j) and no gap at the end

Gy(i, j) best score up to position (i, j) with a gap in the sequence y at position j

Gx(i, j) best score up to position (i, j) with a gap in the sequence x at position i

For the matrices Gx and Gy one has to control whether extending an existing gap or introducing a
new gap gives a better score.

The recursion equations are

Gy(i, j) = max

{
Gd(i− 1, j) − d
Gy(i− 1, j) − e , (3.32)

Gx(i, j) = max

{
Gd(i, j − 1) − d
Gx(i, j − 1) − e and (3.33)

Gd(i, j) = max {Gd(i− 1, j − 1), Gy(i− 1, j − 1), (3.34)

Gx(i− 1, j − 1)} + s(xi, yj)

(3.35)

The initialization Gd(0, 0) = 0, Gy(0, 0) = −∞ and Gx(0, 0) = −∞ leads to Gy(i, 0) = −d −
(i− 1) e, Gx(i, 0) = −∞, Gx(0, j) = −d− (j − 1) e, Gy(0, j) = −∞. Gd(i, 0) = Gd(0, j) =
−∞.
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Figure 3.3: The idea of the banded global alignment algorithm is depicted.

Note, that for being mathematically correct, Gy(i, j) has to consider Gy(i, j−1) and Gx(i, j)
the previous Gy(i− 1, j). However, these two cases mean two consecutive gaps, one in the x and
one in y, which is biologically not reasonable. It would mean that two indel mutations are more
likely than one point mutation. Therefore, for a reasonable setting, two gap opening costs are
higher than each mismatch cost. Thus, these cases of two consecutive gaps in different sequences
are not possible.

Alg. 3.2 shows a pseudo code of the Needleman-Wunsch algorithm for affine gap penalty.
Again the algorithm has time and memory complexity of O(n m). An example (from above) for
the backtrack algorithms is shown in tables 3.9 and 3.10.

For a detailed example of the Needleman-Wunsch global alignment algorithm with affine
gap penalty see Appendix C.

3.3.1.3 KBand Global Alignment

The global alignment algorithms can be made faster if the sequence similarity is high. As seen at
the dot matrices for high sequence similarities most backtracking paths are on the main diagonal
of the matrix. Therefore, instead of computing the whole matrix only a band around the main
diagonal is filled. All solutions are computed within this band. An additional parameter for such
an algorithm is k, the width of the band. k constraints the allowed differences of accumulated gaps
in the sequences. Fig. 3.3 depicts the idea.

The new parameter k may be set to the estimated gaps in the alignment. If both sequences
have the length n, then to leave the band with linear gap penalty costs −2(k + 1)d, which can be
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Algorithm 3.2 Needleman-Wunsch with affine gap

Input: two sequences x and y with length n and m, respectively; scoring matrix s, gap opening
penalty d and gap extend penalty e

Output: optimal global alignment and its score

BEGIN INITIALIZATION
Gd(0, 0) = 0, Gx(0, 0) = −d− (n+m) e, Gy(0, 0) = −d− (n+m) e
for 1 ≤ j ≤ m

Gx(0, j) = −d − (j − 1) e, Gy(0, j) = Gd(0, j) = −d− (n+m) e, Bx(0, j) = “x”
for 1 ≤ i ≤ n

Gy(i, 0) = −d − (i− 1) e, Gx(i, 0) = Gd(i, 0) = −d− (m+ n) e, By(i, 0) = “y”
END INITIALIZATION

BEGIN PROCEDURE
for 1 ≤ i ≤ n do

for 1 ≤ j ≤ m do
Gx(i, j) = max {Gd(i, j − 1) − d , Gx(i, j − 1) − e}
if Gx(i, j) = Gd(i, j − 1) − d then Bx(i, j) = “d” else Bx(i, j) = “x”
Gy(i, j) = max {Gd(i− 1, j) − d , Gy(i− 1, j) − e}
if Gy(i, j) = Gd(i− 1, j) − d then By(i, j) = “d” else By(i, j) = “y”
Gd(i, j) = max{Gd(i− 1, j − 1), Gy(i− 1, j − 1), Gx(i− 1, j − 1)} + s(xi, yj)
if Gd(i, j) = Gd(i− 1, j − 1) + s(xi, yj) then Bd(i, j) = “d”
if Gd(i, j) = Gy(i− 1, j − 1) + s(xi, yj) then Bd(i, j) = “y”
if Gd(i, j) = Gx(i− 1, j − 1) + s(xi, yj) then Bd(i, j) = “x”

end for
end for
score = max {Gd(n,m) , Gx(n,m) , Gy(n,m)}
print “Score: ” score

if Gd(n,m) = score then t = “d”
if Gx(n,m) = score then t = “x”
if Gy(n,m) = score then t = “y”
(i, j) = (n,m)
while (i, j) 6= (0, 0) do

if t =



“d” then print xi
yj

; i = i− 1, j = j − 1, t = Bd(i, j)

“y” then print xi
− ; i = i− 1, t = By(i, j)

“x” then print −
yj

; j = j − 1, t = Bx(i, j)

end while
END PROCEDURE
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Figure 3.4: A fragment in a DNA sequence.

Figure 3.5: Fragments are aligned off the main diagonal.

used to estimate a good k. But also the differences of the sequences’ lengths must be taken into
account.

The KBand algorithm can be extended to an iterative algorithm with increasing k. However,
its running time still depends on the similarity between the sequences.

3.3.2 Local Alignment — Smith-Waterman

The global alignment matches two sequences completely and does not take into account that parts
of the sequences match very good. Many proteins which are remotely related (homologous) share
subsequences which have much higher similarity than random sequences, even if the global align-
ment does not result in a high score. Often these similar subsequences are conservative because
they are important for the function or for the folding of the protein. Currently most relations
between proteins are found by local alignment methods. Also the number of high scoring sub-
sequences is an indicator whether these sequences are homologous or not. For genomic DNA
sequences often only fragments are matched (see Fig. 3.4). In these cases also the lengths do not
matter and the ends of the fragments need not match, which leads to alignments on diagonals off
the main diagonal (see Fig. 3.5).

The main idea of local alignment algorithms is that negative scores are avoided. Negative
scores indicate that the subsequence is not homologous. At every position the algorithm can
decide whether it will use a prefix match and extend it or to start a new match. The new aspect is
to start a new match which can be indicated by deleting the prefix score and setting S(i, j) = 0.
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Again we start with the linear gap penalty, which gives for the recursion

S(i, j) = max


0
S(i− 1, j − 1) + s(xi, yj)
S(i− 1, j) − d
S(i, j − 1) − d

(3.36)

with start

S(0, 0) = 0. (3.37)

However, this time S(i, 0) = S(0, j) = 0.

Because we want to find the best matching subsequence, we have to look for the maximal
S(i, j) which gives the score. Backtracking is also started at the position with maximal score and
may end whenever a 0 is reached.

Alg. 3.3 shows a pseudo code of the Smith-Waterman local alignment algorithm. Again the
algorithm has time and memory complexity of O(n m).

The Smith-Waterman algorithm for affine gap penalty is analogous to its Needleman-Wunsch
counterpart. In contrast to the Needleman-Wunsch algorithm every maximization is kept non-
negative by an additional 0 in the set to maximize.

An example (from above) for the local alignment backtracking algorithm is shown in tables
3.11 and 3.12 for affine gap with d = 20 and e = 4 (e is increased to 4 in order to avoid the global
solution). The best local alignment has a score of 52:

RKFFVGGNWKMN

|.||||||:|.|

RTFFVGGNFKLN

and the second best score of 50 is:

GDKKSLNGAKLSADTEVVCGAPSIYLDF

|....||.|.:..:.|||...|:.|||:

GGNFKLNTASIPENVEVVICPPATYLDY

For detailed examples of the Smith-Waterman local alignment algorithm with linear or
affine gap penalty see Appendix C.

3.3.3 Fast Approximations: FASTA, BLAST and BLAT

The algorithms so far have time complexity of O(nm) (except for KBand algorithms which only
work for similar sequences). Because the number of new sequences increases very fast through
the various genomes which are sequenced, the O(nm) algorithms are too slow to compare a
sequence to all known sequences. For example, the NR data base of non-redundant (non-identic)
sequences contains more than 3 mio. sequences. For secondary structure prediction or for protein
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Algorithm 3.3 Smith-Waterman with linear gap

Input: two sequences x and y with length n and m, respectively; scoring matrix s, gap penalty d
Output: optimal local alignment and its score

BEGIN INITIALIZATION
S(i, 0) = S(0, j) = 0 for 0 ≤ j ≤ m and 0 ≤ i ≤ n

END INITIALIZATION

BEGIN PROCEDURE
for 1 ≤ i ≤ n do

for 1 ≤ j ≤ m do
a(i − 1, j − 1) = S(i − 1, j − 1) + s(xi, yj) , a(i − 1, j) = S(i − 1, j) − d,
a(i, j − 1) = S(i, j − 1) − d
S(i, j) = max{0, a(i− 1, j − 1), a(i− 1, j), a(i, j − 1)}
if S(i, j) > 0 then B(i, j) = arg max{0, a(i − 1, j − 1), a(i − 1, j), a(i, j − 1)} else
B(i, j) = (−1,−1)

end for
end for
(i, j) = arg max{S(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}
print “Score: ” S(i, j)

while S(i, j) 6= 0 do

if B(i, j) =



(i− 1, j − 1) then print xi
yj

(i− 1, j) then print xi
−

(i, j − 1) then print −
yj

(i, j) = B(i, j)
end while

END PROCEDURE
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classification a new sequence is compared with all sequences in NR. This may take a while with
our algorithms.

However, if the perfect alignment need not be ensured then approximations can speed up the
alignment. These fast methods are “seed and extend” algorithms. They find exact matches of
small subsequences of length 2 to 7 with high scores and subsequently extend these matches.
Extensions do not require exact matches. Background of these approximations is that in most
reasonable alignments there are many 2- to 7-mers (or 2- to 7-grams) of exact matches which
highly contribute to the score (cf. main diagonal of the BLOSUM matrices). Another advantage is
that the query sequence can be preprocessed for the 2- to 7-mers match search.

3.3.3.1 FASTA

FASTA (fast-aye, Lipman and Pearson, 1985, Pearson and Lipman, 1988) searches for relevant
diagonals in the alignment matrix (dot-plot or dynamic programming). See http://www2.ebi.

ac.uk/fasta3/.

FASTA works as follows (cf. Fig. 3.6):

1. Searching hot-spots, i.e. perfect matches of length k, where the default is k = 2 for amino
acid sequences (k = 6 for nucleotides). For scoring the PAM250 is used. The search is
sped up by a lookup table of words of length k in the query sequence. The ten best scoring
regions are selected based on number of hot-spots and their distance.

2. The ten best scoring regions are re-evaluated by diagonal runs. Diagonal u contains all
matrix elements (i, j) with u = i − j. The diagonal run accumulates the hot spots on the
diagonal but also matches shorter that k with a PAM250 scoring matrix and finds maximal
scoring subregions. This step is performed also to allow scoring schemes which are different
to step 1.

3. The best-scoring sub-alignments are chained to a larger candidate alignment, where gaps
(penalty is 20) are allowed. Candidates must be beyond a threshold. In such a way candi-
dates for step 4 are selected.

4. A banded Smith-Waterman algorithm with k = 23 generates local alignments around the
high-scoring regions. Finally, a full Smith-Waterman alignment can be obtained.

FASTA misses matches when two sequences have similarities but at different positions or if
patterns occur repeatedly.

3.3.3.2 BLAST

BLAST (Basic Local Alignment Search Tool, Altschul 1990) and Position-Specific-Iterative-
BLAST ( PSI-BLAST for data bases) is the most used bioinformatics software these times. For
a tutorial see http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html and to
download it http://www.ncbi.nlm.nih.gov/BLAST/. The paper of Altschul 1990 which in-
troduced BLAST is now the most cited paper in Biology.

http://www2.ebi.ac.uk/fasta3/
http://www2.ebi.ac.uk/fasta3/
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html
http://www.ncbi.nlm.nih.gov/BLAST/
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Figure 3.6: The FASTA algorithm. The four steps of the FASTA algorithm.

The idea of BLAST is similar to FASTA. BLAST tries to identify high-scoring segment pairs
(HSPs). HSPs are local maximal segment pairs (matching subsequences) exceeding a scoring
threshold. A segment pair is locally maximal if neither shortening nor extending improves the
score.

BLAST works as follows

1. Queue words as k-mers (k = 3 for proteins and k = 11 for nucleotides) are generated for
the query sequence. Queue words score at least T with a non-gapped local alignment with
the query sequence (typically 50 words per amino acid). The list can be generated in linear
time (length of the list). The parameter T is a trade-off between speed and sensitivity: high
T yields shorter lists and is fast but misses weak similarities.

2. The data base (treated as single sequence of length m) is scanned for hits with the queue
words. This is a classical problem which can be solved with finite state machines (more
precise a Mealy automaton) and a keyword tree (cf. Fig. 3.7) similar to the Aho-Corasick
algorithms (see Gusfield, 1999) (cf. Fig. 3.8). The keyword tree can be constructed in about
linear time in the list length. The whole search has complexity O(n+m+ u), where u are
the number of hits.

3. The found hits are gaplessly extended (both directions) to find locally maximal segment
pairs (fast without gaps). Non-overlapping hits on the same diagonal with distance below
a threshold are joined. Only such extensions are considered which do not drop below a
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Figure 3.7: The idea of the keyword tree of the BLAST algorithm.

Figure 3.8: Aho Corasick finite state machine for DNA string matching. Blue arrows are failure
links, that point to the node where the algorithm jumps to if it hits a mismatch. Using failure links
the algorithm does not have to start at the root each time.

certain distance to the best score yet. As in FASTA gapped alignments are constructed with
a KBand algorithm.

BLAST can miss HSPs due to the value of k and the thresholds introduced in step 2 and 3.

The BLAST programs are

BLASTP: compares amino acid sequence query to a protein sequence data base

BLASTN: compares nucleotide sequence query to a nucleotide sequence data base

BLASTX: nucleotide sequence query is translated and compared to a protein sequence data
base

TBLASTN: compares amino acid sequence query to a nucleotide sequence data base, where
the later is translated

TBLASTX: compares nucleotide sequence query to a nucleotide sequence data base but the
sequences are first translated

It is recommended to use translated amino acid sequences if possible. An e-value of 0.05 is
the threshold for significance and indicates interesting results. Repeated segments may confuse
BLAST and should be removed.
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Figure 3.9: Difference between BLAST and FASTA. BLAST extends local regions only on the
diagonal whereas FASTA uses banded alignments.

PSI-BLAST is an iterative BLAST search where a profile (→) or position specific scoring
matrix (PSSM) is constructed from a multiple alignment (→) of the highest scoring hits. The
PSSM is a position-specific score for each position in the multiple alignment. Highly conserved
positions, i.e. positions with the same amino acid or very similar amino acid in every sequence
which was aligned, receive high scores. The scoring profile is subsequently used to perform
another BLAST search where in each iteration the profile is refined and sensitivity increased.

The PSI-BLAST profile generation is important for secondary structure prediction and for
protein classification. In both cases instead of the original sequence the PSSM is used which gen-
eralizes from the individual characteristics of the single sequence. The change from the original
sequence to the PSSM has given a performance jump in both disciplines.

PSI-BLAST may generate dirty profiles by including hits which are no longer similar to the
original sequence. Especially non-informative patterns should be removed from the query like
coiled-coil regions and low complex patterns (e.g. repeating amino acid) to avoid random hits.

Comparison of BLAST and FASTA:

BLAST FASTA
output multiple HSPs best alignment
better for proteins nucleotides
speed faster slower
sensitivity low higher
homologs finds low misses low
false positives more less
significance e-values estimation

3.3.3.3 BLAT

Faster algorithms for finding homologous sequences have been developed.
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BLAT (BLAST-Like Alignment Tool) is about 50 times faster than BLAST at comparable
sensitivity (500 times faster for nucleotides). It also searches first for k-mer hits and extends them
to HSPs as BLAST does. However the speed up compared to BLAST is due to some differences:

BLAST generates a list of words from the query sequence and goes linearly through the
data base. In contrast to BLAST, BLAT builds an index of the data base and goes linearly
through the query

BLAT uses – in contrast to BLAST – near perfect matches, i.e. perfect matches with one or
more amino acids mismatch

BLAT joins more than two hits by extending the hits

BLAT chains the high scoring local alignments together

There exist further methods like QUASAR (Q-gram Alignment based Suffix Arrays, Burkhardt
et al., Recomb, 1999). Here the data base is an index in a suffix array.

3.4 Alignment Significance

In this section we focus on the result of an alignment. What does a certain score mean? How can
it be judged? Is it significant or random? Most alignment tools provide a significance measure. To
understand and judge these measures we will derive and discuss them in the following.

3.4.1 Significance of HSPs

BLAST searches for HSPs which will be considered here. What is the distributions of the align-
ment score of randomly generated sequences? It is not Gaussian. The alignment algorithms pro-
duce high scores but avoid low scores which results in a distribution with positively skewed tail.
The extreme value distribution (see Fig. 3.10) is an appropriate distribution to model the outcome
of optimizing some values:

pdf: p(x) = e−x e−e
−x
, dist.: P (x) = e−e

−x
. (3.38)

Following assumptions are given:

the two sequences x and y are i.i.d. in their elements according to the letter probabilities px
and py

x and y are long

the expected pairwise score for random sequences
∑

i,j px(i) py(j)s(i, j) is negative

there exist i, j for which s(i, j) > 0 (existence of a positive score)



3.4. Alignment Significance 81

Figure 3.10: The density functions of the normal distribution (left) and the extreme value distribu-
tion (right).

Karlin, Dembo, Kawabata, 1990, showed that the maximal segment scores Sn,m (n,m are the
length’ of the sequences) are

Sn,m ∝
lnnm

λ
. (3.39)

Karlin and Altschul, 1990, and Altschul and Gish, 1996, showed that the centered values S̃n,m =
Sn,m − lnnm

λ , are distributed according to an extreme value distribution:

P
(
S̃n,m > S

)
≈ 1− exp

(
−K m n e−λ S

)
≈ K m n e−λ S . (3.40)

The last approximation stems from the fact that eh = 1 + h + O(h2) and for large S, i.e. high
scores, h = −K m n e−λ S is small to allow for a linear approximation. The scoring matrix can
be expressed as log-odds score with pi,j as the target distributions of letter pairs:

s(i, j) = log

(
pi,j

px(i) py(j)

)
/ λ . (3.41)

The expected contribution of a pair to the score is∑
i,j

pi,js(i, j) =
∑
i,j

pi,j log

(
pi,j

px(i) py(j)

)
/λ = (3.42)

KL (pi,j ‖ px(i) py(j)) /λ , (3.43)

where “KL” denotes the Kullback-Leibler distance or the relative entropy of pi,j with respect
to px(i) py(j). The Kullback-Leibler gives the number of additional bits which are needed to
describe a pair (i, j) produced by pi,j if px(i) py(j) is given. Therefore λ can be seen as scaling
to bit scores.

To determine the parameter λ we assume two random sequences and delete one pair, then the
following should hold

E = P
(
S̃n,m > S

)
≈ (3.44)∑

i,j

px(i) py(j) P
(
S̃n−1,m−1 > S − s(i, j)

)
.
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P
(
S̃n,m > S

)
is the probability of score larger S. This is split into the probability of having a

score without the pair (i, j) larger than S−s(i, j) multiplied by observing pair (i, j) summed over
all possible pairs (i, j). Note, that s(i, j) may be deleted from a position outside the HSP and that
some amino acids are more probable to be part of an HSP. Both facts are neglected.

If we approximate S̃n−1,m−1 by S̃n,m then the parameter λ is obtained as positive solution of
the equation∑

i,j

px(i) py(j) exp(λ s(i, j)) = 1 . (3.45)

Typical values for the BLOSUM62 matrix are λ = 0.254 and K = 0.040. K can be interpreted
as how related amino acids are in the given context (the scoring matrix). λ can be interpreted as
the scale of the scoring matrix because a change of the base of the logarithm leads to a re-scaling
of the scoring matrix.

The value P
(
S̃n,m > S

)
is called the e-value and is used as one output of the BLAST algo-

rithm. BLAST uses another output called “bit-score” which is a normalized score independent of
λ and K.

We see that the log-probability is

ln(E) = ln
(
K m n e−λ S

)
= ln (m n) + ln (K) − λ S . (3.46)

We set the bit-score S̄ to

S̄ :=
λS − ln (K)

ln 2
(3.47)

therefore

S =
S̄ ln 2 + ln (K)

λ
. (3.48)

This leads to

ln(E) = ln (m n) + ln (K) − λ

(
S̄ ln 2 + ln (K)

λ

)
(3.49)

log2(E) = log2 (m n) − S̄ (3.50)

E = m n 2−S̄ (3.51)

Therefore the e-value p of the bit-score S̄ is a better score which is independent of K and λ.

Finally, we compute the probability that lmaximal segments scores or HSPs exceed a threshold
S. The HSPs follow a Poisson distribution and E is the probability of observing an HSP > S (the
average number of events). Therefore we have

P (l) = e−E
El

l!
. (3.52)
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3.4.2 Significance of Perfect Matches

In this subsection we focus on the significance of perfect matches or near perfect matches. There-
fore methods like BLAT can be evaluated in this framework but also results from BLAST or global
alignment if perfect matches are considered.

The expected number of non-overlapping k-mers of the query of length n which match a data
base of length m with each of the a letters having the same probability is

(n − k + 1)
m

k

(
1

a

)k
. (3.53)

Here (n − k + 1) are the number of k-mers in the query, mk are the number of non-overlapping

k-mers in the data base and
(

1
a

)k is the matching probability (context-free).

If we know M the similarity between the query and the data base, then the matching probabil-
ity is

(M)k . (3.54)

The probability of at least one matching k-mer in the data base to a certain k-mer in the query is

1 −
(

1 − Mk
)m/k

. (3.55)

This is one minus the probability of that all m/k do not match simultaneously. For small M we
can approximate it by

1 −
(

1 − Mk
)m/k

≈ Mk . (3.56)

Now we consider almost perfect matches. The probability of a match with 1 or less mismatches
is simply the sum of probability of a perfect match and the probability of the mismatch:

k Mk−1(1−M) + Mk . (3.57)

The first term is the number k of existing (k − 1)-mers multiplied by their probability. Their
probability is the probabilityMk−1 of (k−1) matches multiplied by the probability of a mismatch
(1 − M). Other probabilities like equal letter probability follow analog, e.g. by replacing M
through 1

a .

For more than one exact match we introduce

pm = Mk . (3.58)

For non-overlapping k-mers more than one match can be described by a binomial distribution:
match or non-match. The probability to obtain l matches is(

m/k

l

)
plm (1 − pm)m/k−l . (3.59)
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For more than l matches and large m the binomial distribution B(m/k, pm) can be either ap-
proximated through a Poisson distribution or through a normal distribution depending onm/kMk:

B(m/k, pm) ∼
{
P(np) for m/k Mk ≤ 5

N (np,
√
npm(1− pm)) for m/k Mk > 5

, (3.60)

where P denotes the Poisson distribution and N the normal distribution. Note, that approxima-
tion of B through the normal distribution approximation results from the central limit theorem.
The approximation through the Poisson distribution is due to its probability-generating function
G(s) = (p s + (1− p))t

(1 + l/t)t ≈ el (3.61)

(p s + (1− p))t =
(

1 +
p n

t
(s − 1)

)t
≈ exp(n p (s− 1)) . (3.62)



Chapter 4

Multiple Alignment

4.1 Motivation

An extension of pairwise sequence alignment is the multiple sequence alignment. Now more than
two sequences must be compared to one another by writing each sequence in a separate line. The
sequences should be arranged so that in the columns the amino acids match as good as possible.
Below is an example of a multiple sequence alignment of triosephosphate isomerase from different
species.

triosephosphate isomerase

10. 20. 30. 40.
Human APSRKFFVGGNWKMNGRKQSLGELIGTLNA...AKVPADTEVVCAPPTAY
Chicken ...RKFFVGGNWKMNGDKKSLGELIHTLNG...AKLSADTEVVCGAPSIY
Yeast .GAGKFVVGGNWKCNGTLASIETLTKGVAASVDAELAKKVEVIVGVPFIY
E. coli ..ARTFFVGGNFKLNGSKQSIKEIVERLNT...ASIPENVEVVICPPATY
Amoeba ..MRHPLVMGNWKLNGSRHMVHELVSNLRK..ELAGVAGCAVAIAPPEMY
Archaeon AKLKEPIIAINFKTYIEATGKRALEIAKAA...EKVYKETGVTIVVAPQL
consensus ...r.f.vggNwKlng.k.si.elv..l.a...a.v....eVvia.p..y

50. 60. 70. 80. 90.
Human IDFARQKLD.....PKIAVAAQNCYKVTNGAFTGEISPGMIKDCGATWVV
Chicken LDFARQKLD.....AKIGVAAQNCYKVPKGAFTGEISPAMIKDIGAAWVI
Yeast IPKVQQILAGEANGANILVSAENAWTKS.GAYTGEVHVGMLVDCQVPYVI
E. coli LDYSVSLVKK....PQVTVGAQNAYLKASGAFTGENSVDQIKDVGAKYVI
Amoeba IDMAKREAEG....SHIMLGAQNVNLNLSGAFTGETSAAMLKDIGAQYII
Archaeon VDLRMIAES.....VEIPVFAQHIDPIKPGSHTGHVLPEAVKEAGAVGTL
consensus id.....l........i.vgAqn.y....GafTGevs.amikd.ga.yvi

100. 110. 120. 130. 140.
Human LGHSERRHVFGESDELIGQKVAHALAEGLGVIACIGEKLDEREAGITEKV
Chicken LGHSERRHVFGESDELIGQKVAHALAEGLGVIACIGEKLDEREAGITEKV
Yeast LGHSERRQIFHESNEQVAEKVKVAIDAGLKVIACIGETEAQRIANQTEEV
E. coli LGHSERRSYFHEDDKFIADKTKFALGQGVGVILCIGETLEEKKAGKTLDV
Amoeba IGHSERRTYHKESDELIAKKFAVLKEQGLTPVLCIGETEAENEAGKTEEV
Archaeon LNHSENRMILADLEAAIRR....AEEVGLMTMVCS...........NNPA
consensus lgHSErR.if.esde.ia.k...al..Gl.vi.Cige...er.ag.te.v

85
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150. 160. 170. 180. 190.
Human VFEQTKVIADNV..KDWSKVVLAYEPVWAIGTGKTATPQQAQEVHEKLRG
Chicken VFEQTKAIADNV..KDWSKVVLAYEPVWAIGTGKTATPQQAQEVHEKLRG
Yeast VAAQLKAINNAISKEAWKNIILAYEPVWAIGTGKTATPDQAQEVHQYIRK
E. coli VERQLNAVLEEV..KDFTNVVVAYEPV.AIGTGLAATPEDAQDIHASIRK
Amoeba CARQIDAVLKTQGAAAFEGAVIAYEPVWAIGTGKSATPAQAQAVHKFIRD
Archaeon VSAAVAALNPDY.........VAVEPPELIGTGIPVSKAKPEVITN....
consensus v..ql.ai...v....w..vvlAyEPvwaIGTGktatp.qaqevh..ir.

200. 210. 220. 230.
Human WLKSNVSDAVAQSTRIIYGGSVTGATCKELASQPDVDGFLVGGASLKP.E
Chicken WLKTHVSDAVAQSTRIIYGGSVTGGNCKELASQHDVDGFLVGGASLKP.E
Yeast WMTENISKEVAEATRIQYGGSVNPANCNELAKKADIDGFLVGGASLDAAK
E. coli FLASKLGDKAASELRILYGGSANGSNAVTFKDKADVDGFLVGGASLKP.E
Amoeba HIAK.VDANIAEQVIIQYGGSVNASNAAELFAQPDIDGALVGGASLKADA
Archaeon ..TVELVKKVNPEVKVLCGAGISTGEDVKKAIELGTVGVLLASGVTKAKD
consensus wl...v...va...rilyGgsv.ggn..ela...dvdGfLvggaslk..e

240.
Human FVDIINAKQ.....
Chicken FVDIINAKH.....
Yeast FKTIINSVSEKL..
E. coli FVDIINSRN.....
Amoeba FAVIVKAAEAAKQA
Archaeon PEKAIWDLVSGI..
consensus f..iin........

Multiple sequence alignment is used to

detect remote homologous regions which are detected through the average of all sequences
but cannot be detected through pairwise alignment (A is similar to B and B to C even if B
and A are not similar to one another),

detect motifs (→), i.e. regular patterns, in families of proteins,

detect conserved regions or positions, e.g. to extract disulfide bonds,

detect structural blocks like helices or sheets,

construct phylogenetic trees (→),

construct a profile for protein families to which a new sequence can be compared,

construct profiles instead of the sequences to obtain a more reliable input to sequences
processing methods,

sequence genomes by superimposing fragments (nucleotides),

cluster proteins according to similar regions.

Multiple sequence alignment can be based on the ideas of pairwise sequence alignment but
some issues must be reconsidered. As in pairwise alignment we separate scoring schemes and
optimization methods.
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4.2 Multiple Sequence Similarities and Scoring

For the similarity measure there are different approaches: (1) either measure similarity to a refer-
ence sequence, (2) measure similarities between evolutionary adjacent sequences, or (3) measure
all pairwise similarities. The next subsections will discuss these different approaches.

4.2.1 Consensus and Entropy Score

The consensus sequence is the sequence obtained if for each column in the alignment the most
frequent amino acid is chosen (cf. the last line of above multiple alignment example). If the
highest frequency does not exceed a threshold (is not significantly higher than other frequencies)
then either a wildcard, a gap, or a set of amino acids (set is expressed by one letter) will be
inserted. More precisely the consensus sequence contains at a certain column the amino acid or
letter representing a group of amino acids which has the highest pairwise score to all other amino
acids and gaps in the column.

The consensus score is the sum of the pairwise scores between sequences and the consensus
sequence. The costs between amino acids were already considered. The cost between amino acids
and gaps must be defined.

The consensus score can be generalized by constructing a profile instead of the consensus
sequence. A profile gives the relative frequency fi,a of each letter a in each column i of the
alignment. Later we will see another approach to generate profiles, which was introduced by
Karlin and Altschul, 1990.

High entropy of the letter distribution in one column means that all letter are equally proba-
ble. Zero entropy means that only one letter occurs in one column. Therefore a good alignment
correlates with a low accumulative entropy per position, and the entropy score is

−
∑
i

∑
a

fi,a log fi,a . (4.1)

4.2.2 Tree and Star Score

In order to count the mutations (i.e. the similarity), instead of comparing all pairs of letters only
those pairs should be compared which are evolutionary adjacent, i.e. are ancestors/successors of
each other. For example if only two letters appear at one column but multiple, say D and E, then it
may be only one mutation which changed D into E or vice versa. All sequences older than the time
of the mutation agree to each other as do all sequences after the mutation. Pairwise comparison of
letters will overestimate the number of mutations.

To compare evolutionary adjacent sequences we must assume to know a phylogenetic tree (→)
which gives the evolutionary relationship. The tree may be constructed through multiple alignment
as preprocessing.
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Figure 4.1: Pairwise comparison of letters according to a tree. The edges are the comparisons
which are made. Bold edges are mismatches.

If we compare the sequences

NNN

NNN

NNN

NNC

NCC

then the edges in Fig. 4.1 give the comparisons to make, where bold edges are mismatches.

Instead of a phylogenetic tree also a phylogenetic star may be used where one sequence is
considered as ancestor of all others. This scoring scheme is similar to the consensus score as the
sequence most similar to the consensus score is more likely the ancestor. Reason for this is that
sequences resulting from the ancestor by mutations are independent of each other. Mutations are
conservative and, therefore, at every position only few letters differ from the ancestor. Fig. 4.2
give the comparisons to make, where bold edges are mismatches.

4.2.3 Weighted Sum of Pairs Score

The most common score is the weighted sum of pairs, where all pairs of letters per alignment
position are mutually compared.

As above also the weighted sum of pairs can be expressed through a graph where each edge
means a contribution to the score by comparing the letters at the nodes of the edge. Fig. 4.3 gives
all pairwise comparisons to make.

For alignment length L and N sequences, the weighted sum of pairs score is

L∑
i=1

N−1∑
l=1

N∑
j=l+1

wl,j s (xi,l, xi,j) . (4.2)

The weights may be chosen to reduce the influence of closely related sequences to avoid that the
final score is governed by close homologous sequences.
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Figure 4.2: Pairwise comparison of letters according to a star. The edges are the comparisons
which are made.

Figure 4.3: Pairwise comparison of letters. The edges are the comparisons which are made. Bold
edges are mismatches
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The weighted sum of pairs score has disadvantages. Assume that in a column all letters are
equal C and now we flip one letter to D. What is the new relative score compared to the old score?
It decreases with respect to the number of sequences N . The old score is

Sold =
N (N − 1)

2
s(C,C) (4.3)

and the new is

Snew =
N (N − 1)

2
s(C,C) − (N − 1)s(C,C) + (N − 1)s(C,D) (4.4)

which gives as relative decrease

Sold − Snew

Sold
=

2 (N − 1) s(C,C) − 2 (N − 1) s(C,D)

N (N − 1) s(C,C)
= (4.5)

2

N

(
1 − s(C,D)

s(C,C)

)
.

Note, that for all reasonable scoring matrices s(C,D) < s(C,C) from which follows that(
1 − s(C,D)

s(C,C)

)
> 0.

Therefore, the relative decrease is inverse proportional to the number of sequences. However that
is contra-intuitive because a new letter in a column of 100 equal letters is more surprising than
a new letter in a column of 3 equal letters. Information theory say the same: a new letter in a
column of 100 has higher information gain because of the low entropy whereas the information
gain at high entropy is low (the description length of the new letter a is − log fi,a = log(N)).

Gaps can be handled as for pairwise algorithms where linear gaps are to prefer as the alignment
methods are computationally much more expensive for affine gaps. For the pairwise score the gaps
which fall onto gaps are removed.

4.3 Multiple Alignment Algorithms

For many cases the multiple alignment optimization problem is NP-hard. Therefore, the solutions
are often approximated if the number of sequences is more than 10 to 15.

The algorithms can be divided into four classes

exact methods: MSA

progressive methods: COSA, GSA, clustalW, TCoffee

iterative and search algorithms: DIALIGN, MultAlin, SAGA, PRRP, Realigner

local methods (motif/profile): eMotif, Blocks, Dialign, Prosite, HMM, Gibbs sampling

divide-and-conquer algorithms: DCA, OMA

Tab. 4.1 gives an overview over the multiple alignment programs, their web link, and their associ-
ated publication.
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Exact alignment methods
MSA http://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/

msa.html

Lipman et al. (1989)
Gupta et al. (1995)

Progressive alignment methods
CLUSTALW ftp://ftp.ebi.ac.uk/pub/software Thompson et al.

(1994/97)
Higgins et al. (1996)

PRALINE http://www.ibi.vu.nl/programs/pralinewww/ Heringa (1999)

Iterative and search algorithms
DIALIGN seg-
ment alignment

http://bibiserv.techfak.uni-bielefeld.de/dialign/ Morgenstern et al.
(1996)

MultAlin http://multalin.toulouse.inra.fr/multalin/ Corpet (1988)
PRRP pro-
gressive global
alignment

http://www.genome.jp/tools/prrn/ Gotoh (1996)

SAGA genetic al-
gorithm

http://www.tcoffee.org/Projects/saga/ Notredame and Higgins
(1996)

Local alignments / motif / profile
Aligned Segment
Statistical Eval.
Tool (Asset)

http://iubio.bio.indiana.edu/soft/iubionew/

molbio/align/search/Asset/

Neuwald and Green
(1994)

BLOCKS http://blocks.fhcrc.org/blocks/ Henikoff and Henikoff
(1991, 1992)

eMOTIF http://motif.stanford.edu/projects.html Nevill-Manning et al.
(1998)

GIBBS (Gibbs
sampler)

http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html Lawrence et al. (1993),
Liu et al. (1995),
Neuwald et al. (1995)

HMMER hidden
Markov model

http://hmmer.janelia.org/ Eddy (1998)

MACAW http://iubio.bio.indiana.edu/soft/molbio/ncbi/

old/macaw/

Schuler et al. (1991)

MEME (EM
method)

http://meme.sdsc.edu/meme/website/ Bailey and Elkan
(1995), Grundy et al.
(1996, 1997), Bailey
and Gribskov (1998)

Profile (UCSD) http://www.sdsc.edu/projects/profile/ Gribskov and Veretnik
(1996)

SAM hidden
Markov model

http://compbio.soe.ucsc.edu/sam.html Krogh et al. (1994),
Hughey and Krogh
(1996)

Table 4.1: Overview over multiple alignment programs.

http://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/msa.html
http://www.ncbi.nlm.nih.gov/CBBresearch/Schaffer/msa.html
ftp://ftp.ebi.ac.uk/pub/software
http://www.ibi.vu.nl/programs/pralinewww/
http://bibiserv.techfak.uni-bielefeld.de/dialign/
http://multalin.toulouse.inra.fr/multalin/
http://www.genome.jp/tools/prrn/
http://www.tcoffee.org/Projects/saga/
http://iubio.bio.indiana.edu/soft/iubionew/molbio/align/search/Asset/
http://iubio.bio.indiana.edu/soft/iubionew/molbio/align/search/Asset/
http://blocks.fhcrc.org/blocks/
http://motif.stanford.edu/projects.html
http://ccmbweb.ccv.brown.edu/gibbs/gibbs.html
http://hmmer.janelia.org/
http://iubio.bio.indiana.edu/soft/molbio/ncbi/old/macaw/
http://iubio.bio.indiana.edu/soft/molbio/ncbi/old/macaw/
http://meme.sdsc.edu/meme/website/
http://www.sdsc.edu/projects/profile/
http://compbio.soe.ucsc.edu/sam.html
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Figure 4.4: Matrix used for pairwise alignment. Each path through the matrix is an alignment of
two sequences.

4.3.1 Exact Methods

The MSA algorithm (Lippman et al., 1989, Gupa et al., 1995) generalizes the dynamic program-
ming ideas from pairwise alignment. For three sequences a cube instead of the matrix used for the
dynamic programming algorithms for aligning two sequences must be used. At each coordinate
direction a sequence is written. Grid points (nodes) contain as entries the best alignment score
of the according subsequences. The paths through a matrix (cf. Fig. 4.4) are now paths from the
lower, left, front to the upper, right, back through a cube (cf. Fig. 4.5). The alignment of the
examples in Fig. 4.5 is:

A-BD-E-

ACB--E-

A--DCEE

At each node of the cube 7 steps in order to go to other nodes are possible in order to move closer
to the upper, right, back node.

x x - - x x -

y - y - y - y

z - - z - z z

The three dimensions can be generalized to more dimension, i.e. to more sequences. However
the memory and computational complexity grow exponentially with the number of sequences.
Therefore, these methods are limited to few sequences and to short sequences. Gupa et al., 1995,
proposed a more efficient variant of MSA. First pairwise alignments are computed in order to
constrain the position of the optimal multiple alignment path. The optimal path can be projected
onto 2 dimensional planes on which it represents a pairwise alignment. The constraints reduce the
number of entries which must be evaluated on the hypercube.
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Figure 4.5: Cube for aligning three sequences. Each path from the lower, left, front to the upper,
right, back through the cube is an alignment of three sequences.

MSA (Gupa) works as follows:

compute all pairwise alignment scores Sk,l

predict a phylogenetic tree based on the pairwise scores

compute pairwise weights based on the tree

construct a temporary multiple alignment based on the phylogenetic tree with score St

compute Bk,l, a lower bound on S[k, l], the score of the projection of the optimal multiple
alignment to the sequences k and l

constrain the space in the cube where the optimal alignment path goes through Bk,l; the
constraints can be computed similar to the Baum-Welch algorithm used for hidden Markov
models

compute the optimal alignment on the constraint cube; here Dijkstra’s shortest path algo-
rithm for DAGs (directed acyclic graphs) with nonnegative edges can be used; using a pri-
ority queue avoids to construct the whole graph; non-negativity guarantees monotonically
increasing costs and allows to use the priority queues

compare the weight found in the alignment with the maximal weight

The last step checks whether the actual weight exceeds the maximal weight. If this is the case then
a better alignment may be possible. However, larger maximal weight means more computational
costs.
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The Carillo-Lipman bound is given by

Bk,l = St + Sk,l −
∑
i,j

Si,j . (4.6)

The inequality

S[k, l] ≥ Bk,l (4.7)

follows from S[k, l] ≤ Sk,l (the optimal pairwise alignment scores is better or equal than all other
alignments) and St ≤ S (S is the optimal multiple alignment score):

S ≥ St (4.8)

⇔
∑
i,j

S[i, j] ≥ St

⇒
∑

(i,j)6=(k,l)

Si,j + S[k, l] ≥ St

⇔ S[k, l] ≥ St −
∑

(i,j)6=(k,l)

Si,j

⇔ S[k, l] ≥ St + Sk,l −
∑
i,j

Si,j

⇔ S[k, l] ≥ Bk,l .

The MSA can be improved according to Lermen and Reinert, 1997, through the A∗ algorithm
(see Alg. B.1). The A∗ algorithm uses the bounds derived above as approximative distance to the
goal.

The MSA algorithm in its original form uses the weighted sum of pairs as score and a linear
gap penalty. The weighting is computed as the difference of the pairwise alignment and the score
of the projected multiple alignment. Therefore the weight measures the difference between the
multiple alignment reduced to the special pair and the pairwise alignment. Larger difference means
higher weight. As a consequence, similar sequences pull the multiple alignment towards them and,
therefore, are down-weighted. In conclusion, the effect of similar sequences heavily influencing
the alignment is reduced. However the weights through the phylogenetic tree are vice versa where
weights between distant sequences are removed, i.e. set to zero.

Summing up all the weights results in another value which measures the overall divergence of
the sequences.

4.3.2 Progressive Algorithms

Progressive methods are the most popular methods for multiple alignment. Especially ClustalW
(Thomson,Higgins,Gibson, 1994) and TCoffee (Notredame, Higgins, Heringa, 2000) are most
prominent.

ClustalW and TCoffee work as follows:
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perform pairwise alignment for each pair

a weight matrix of pairwise weights is computed; the entry in this weight matrix is one
minus the ratio of perfect matches in the pairwise alignment.

construct a phylogenetic tree from the alignments with evolutionary distances (Neighbor-
Joining method (→))

start with the closest distance and compute alignments between pairs of sequences, pairs of
sequence and alignment, and pairs of alignments. In this way alignments are propagated
through the tree.

Initial alignments for the phylogenetic tree may be found through local alignment methods. The
phylogenetic tree supplies also the weighting factors as in MSA.

The progressive methods are prone to getting stuck in local minima as many optimization
methods do. For closely related sequences other scoring matrices should be used than for remotely
related sequences, however the same scoring matrix is used for all sequences. For remotely related
sequences the gap penalty parameters are an important hyper-parameter which may be sensitive.

4.3.2.1 ClustalW

Above mentioned problems of progressive methods are partly addressed by clustalW:

gap penalties are adjusted context dependent: for protein sequences gaps in hydrophobic
regions (corresponding to the interior of the protein) are more penalized than gaps in hy-
drophilic regions (loops or random coil); gaps which are close to other gaps (within eight
amino acids) but do not match them are more penalized in order to construct gaps at the
same position; gaps in regions where earlier gaps are found obtain a lower gap opening
penalty; gap penalties are amino acid dependent (e.g. the smallest amino acid G indicates
loops where gaps are )

scoring matrices are adapted: a special scoring matrix from the PAM or the BLOSUM
families can be used according to the expected evolutionary distance

sequences are weighted through a phylogenetic tree: sequences which are similar to
one another obtain lower weights; this accounts for unbalanced data sets (e.g. very simi-
lar sets of sequences); the initial phylogenetic tree supplies the weights according to the
edge length/weightening; the score for a column is

∑N−1
i=1

∑N
j=i+1wi wj s(i, j), where wi

denotes the weight of sequence i;

adaptive phylogenetic tree: for insufficient scores the tree can be changed

The initial gap penalty parameters are chosen according to the scoring matrix, the similarity
of the sequences (% identity), length of the sequences (logarithm of the length of the shorter
sequences is added to the base gap opening penalty), difference of the length of the sequences
(gap extension penalty is multiplied by (1 + | log(n/m)|) to avoid gaps in the shorter sequence).

ClustalW comes with an option where the alignment can be computed fast but only approxi-
mative.
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4.3.2.2 TCoffee

TCoffee (Tree based Consistency Objective Function For alignmEnt Evaluation) leads on average
to better alignments than clustalW.

TCoffee work as follows:

compute libraries of pairwise alignments based on both global (clustalW) and local (FASTA)
alignments; the combination of local and global alignments gives more reliable relationships
between sequences

library weights are computed according to % identity

libraries are combined and extended: if a pair of sequences is duplicated between two li-
braries, it is merged and gets a weight equal to the sum of the two weights; the library is
extended by aligning two sequences through a third sequence where matching letters (both
are aligned to the same letter of the third sequence) of the original pair are up-weighted

perform progressive alignment with a distance matrix based on the extended library

4.3.3 Other Multiple Alignment Algorithms

4.3.3.1 Center Star Alignment

The Center Star Alignment selects first the center sequence ī which is the sequence with minimal
pairwise costs if all pairwise alignment costs C(i, j) to other sequences are summed up:

ī = arg min
i

∑
j

C(i, j) . (4.9)

In the following the center sequence is called sequence 1.

A new sequence is added to the set of already aligned sequences by a pairwise alignment to
the first multiple aligned sequence (center sequence). The addition may cause new gaps in the
multiple alignment.

Gusfield, 1993, showed that this procedure produces an alignment with a cost which is less
then twice the optimal cost, if the symmetric alignment cost fulfills

C(i, i) = 0 and C(i, j) ≤ C(i, k) + C(k, j) . (4.10)

Problem is to ensure the assumptions on the cost.

Assume we have a scoring matrix s with

s(−,−) = 0 (4.11)

s(−, i) < 0 (4.12)

s(k, k) ≥ s(i, k) + s(k, j) − s(i, j) . (4.13)

Note that the last inequality holds for gaps instead of i, j, and k. The last inequality is:
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AB AB

|| > ||

AC CA

With these assumptions

C(i, j) = Si,i − 2 Si,j + Sj,j , (4.14)

where Si,j is the alignment score between sequences i and j, is a distance, which fulfills above
conditions. The first condition is trivial to show. The second condition equivalent to

Si,i − 2 Si,j + Sj,j ≤ Si,i − 2 Si,k + Sk,k + Sk,k − 2 Sk,j + Sj,j (4.15)

⇔ Si,j ≥ Si,k + Sk,j − Sk,k .

To show this inequality we construct an alignment of i and j as follows. First align i to k and then
j to k. Now align i,j, and k based on the pairwise alignments, where the alignment obtains a gap
if the gap was present in the first or second alignment. If S is the score of the multiple alignment,
then per construction S[i, k] = Si,k because the projection of the multiple alignment onto (i, k),
S[i, k], leads to pairs observed already in the pairwise alignment or to gap-pairs which contribute
with zero to the score. Analogously S[k, j] = Sk,j and S[k, k] = Sk,k can be derived.

Because in the multiple alignment componentwise

s(i, j) ≥ s(i, k) + s(k, j) − s(k, k) (4.16)

holds, we obtain

S[i, j] ≥ S[i, k] + S[k, j] − S[k, k] and (4.17)

S[i, j] ≥ Si,k + Sk,j − Sk,k .

The inequality to show follows from

Si,j ≥ S[i, j] . (4.18)

Now we want to show the idea of the proof of Gusfield that the center star alignment has only
twice of the cost of the optimal alignment cost.

The center sequence alignment has cost C with

C =

N∑
i=1

N∑
j=1,j 6=i

C(i, j) ≤ (4.19)

N∑
i=1

N∑
j=1,j 6=i

C(i, 1) + C(1, j) =

2 (N − 1)

N∑
i=2

C(i, 1) .
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Figure 4.6: The figure depicts how motifs can be aligned in order to obtain landmarks for multiple
alignments.

For the optimal cost C∗ we have

C∗ =
N∑
i=1

N∑
j=1,j 6=i

C(i, j) ≥ (4.20)

N∑
i=1

N∑
j=2

C(i, 1) = N
N∑
i=2

C(i, 1) .

Therefore

C

C∗
≤ 2(N − 1)

N
≤ 2 . (4.21)

4.3.3.2 Motif- and Profile-based Methods

If motifs, i.e. patterns, are found then they can be superimposed onto each other and landmarks
for the alignment are generated. Fig. 4.6 shows how motifs/patterns can be aligned in order to get
landmarks for multiple alignments.

Profiles and blocks can be derived from multiple alignments of protein families. These can be
used to find patterns in new sequences.

4.3.3.3 Probabilistic and Model-based Methods

SAGA (Sequence Alignment by Genetic Algorithm) uses a genetic algorithm and MSASA (Mul-
tiple Sequence Alignment by Simulated Annealing) simulated annealing for finding good align-
ments. Gibbs sampling is another method to find solutions of discrete problems (it is very similar
to genetic algorithms).

HMMs (hidden Markov models) can be used to find motifs but they almost always get stuck
in local minima without initializing them with conservative regions.

4.3.3.4 Divide-and-conquer Algorithms

All N sequences are broken up into two subsequences and the two groups of subsequences are
multiple aligned (cf. Fig. 4.7). These idea suffers from finding the optimal cut positions. If an
alignment is divided then the global alignment must go through the cut (cf. Fig. 4.8). Stoye
introduces additional cost matrices for each sequence pair which evaluate each cut position by
assuming that the alignment must go through this position.
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Figure 4.7: The idea of the divide and conquer algorithm is depicted. The sequences are cut and
the cuts separately aligned whereafter the alignments are concatenated.
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Figure 4.8: A cut position i, j is depicted. The global alignment must go through the cut position.
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4.4 Profiles and Position Specific Scoring Matrices

As in section 3.4.1 for pairwise alignments Karlin and Altschul, 1990, showed similar results for
single sequences. For gapped alignment see Altschul et al., 1997, "Gapped BLAST and PSI-
BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-
3402.

The following assumptions are given:

the sequence x is i.i.d. in its elements according to the letter probabilities px

n the length of x is large

the expected letter score for random sequences
∑

i px(i) s(i) is negative

there exist i for which s(i) > 0 (existence of a positive score)

The following is analog to section 3.4.1. The score for a sequence of length n is

Sn =
n∑
i=1

s(i) . (4.22)

the centered value S̃n = Sn − lnn
λ , is distributed according to an extreme value distribution:

P
(
S̃n > S

)
≈ 1− exp

(
−K e−λ S

)
≈ K e−λ S , (4.23)

where λ is the solution of∑
i

px(i) exp(λ s(i)) = 1 . (4.24)

Let qi be the frequency of a letter ai in a column of a multiple alignment. Karlin and Altschul,
1990, showed that for sufficiently high scoring segments

lim
n→∞

qi = px(i) exp(λ s(i)) . (4.25)

Therefore

s(i) = ln

(
qi

px(i)

)
/λ (4.26)

is the score for the letter i at this position. Typical values for λ and K are λ = 0.254 and
K = 0.040.

These scores per position are called “Position Specific Scoring Matrices” (PSSMs) or profiles.
They serve to evaluate a new sequence where high scores mean that the sequence is similar to the
sequences from which the multiple alignment was constructed.
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To estimate the probability pe(i | c) of amino acid i to be in column c PSI-BLAST uses
pseudo-counts gi:

gi =
∑
j

qj
px(i)

qij , (4.27)

where qij are the target frequencies given by the entries of the substitution matrix.

The pseudo-count results from summing out the hidden variables:

qij = p(i, j) (4.28)

px(i) = p(i) (4.29)
p(i, j)

p(i)
= p(i | j) = p(i | j, c) (4.30)

qj = p(j | c) (4.31)

pp(i | c) =

20∑
j=1

p(i | j, c) p(j | c) , (4.32)

where in the last equation the hidden variable j is integrated (summed) out.

Finally the pseudo-counts are averaged with the observed frequencies:

pe(i | c) =
αp(i | c) + βgi

α + β
(4.33)

Using Nc, the number of different residues in column c, the default values are

α = Nc − 1 (4.34)

β = 10 . (4.35)

Nc is a measurement of independence of the sequences. For example if we have 10 identical
sequences then we would overestimate the according amino acids.

The independence of sequences can be counted in different ways. Sunyaev et al. (1999) count
in the PSIC-approach the number of identical positions to estimate the independence. The PSIC-
method was extended in Mittelman el al. (2003) by grouping together the sequences with the same
amino acid in a certain column and then computing the effective frequencies by the PSIC-method.



Chapter 5

Phylogenetics

5.1 Motivation

5.1.1 Tree of Life

One central field in biology is to infer the relation between species. Do they possess a common
ancestor? When did they separate from each other? The relation is presented in form of a tree
with a unique root. Leaves of the tree are currently observable species and are called taxa. The
branches represent the relationship (“is ancestor of”) between nodes. The root is the start of life
on earth. From the first living organism all other life forms are derived. An edge in the tree of life
means that a species is the ancestor of another one. A node means a split of a species into two.

The construction of the tree of life is called phylogeny (phylo = tribe and genesis). Classical
biological phylogeny is divided into the cladistic and the phenetic approach. Cladistic trees are
based on conserved characters and phenetic trees on the measure of distance between the leaves
of the tree (the phenetic approach considers the distance as a whole and not based on single fea-
tures). Problems of the phenetic approach are simultaneous development of features and different
evolution rates. There may be convergent evolution e.g. finding the best form in water.

For example the phylogenetic relation between some well known animals is depicted in Fig.
5.1. The phylogenetic relation between humans and apes is shown in Fig. 5.2. Interesting questions
appear at the root of the tree of life. How did life start? Fig. 5.3 shows the root of the tree of life
as it divides into the three kingdoms Bacteria, Archaea, and Eukarya.

Figure 5.1: Tree of life for some animals. Birds are separated.
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Figure 5.2: Tree of life focused on the relation between human and apes.

Figure 5.3: The root of the tree of life.
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Figure 5.4: The gene tree for the gene α-hemoglobin compared to the species tree. Both match
because the gene evolved from common ancestors.

Figure 5.5: The gene tree for the gene Glycosyl Hydrolase compared to the species tree. The trees
do not match because of the horizontal gene transfer (HGT).

5.1.2 Molecular Phylogenies

We are focusing on molecular phylogenies in contrast to phylogenies based on characteristics like
wings, feathers, etc, i.e. morphological characters. With molecular phylogenetics, the differences
between organisms are measured on the proteins and RNA coded in the DNA, i.e. on amino acid
and nucleotide sequences. In Fig. 5.4 the species tree and the gene tree for α-hemoglobin are
depicted – they match. Molecular phylogenetics is more precise than its counterpart based on ex-
ternal features and behavior and can also distinguish small organism like bacteria or even viruses.
Further advantages of molecular phylogenetics are that the DNA must be inherited and connects
all species, the molecular phylogenetics can be based on mathematical and statistical methods
and is even model-based as mutations can be modeled, remote homologies can be detected, the
distance is not only based on one feature, but on many genes.

There are difficulties in constructing a phylogenetic tree. First, different regions in the DNA
mutate at different rates. Which means that the distances may look differently. Secondly, hori-
zontal transfer of genetic material (Horizontal Gene Transfer, HGT) between species is possible,
e.g. through a virus, DNA transformation, symbiosis, or other mechanism. For example Glycosyl
Hydrolase was transferred from E.coli to B.subtilis (see Fig. 5.5).

The branches of the tree represent time measured in number of mutations. In the molecular
clock hypothesis it is assumed that different branches have the same evolution / mutation rate. The
number of substitutions is assumed to follow a Poisson distribution. For sequences the mutation
rate is assumed to be equally distributed over the sequence.
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However, phylogenetics can be used to infer gene functions, find regions with high or low
mutation rate and, therefore, conservative regions,

5.1.3 Methods

The first step in doing phylogenetics is to choose the sequences from which the tree should be
constructed. Very popular sequences to construct phylogenetic trees are the sequences of rRNA
(the RNA the ribosome is build of) and mitochondrial genes. These genetic material is present in
almost all organisms and they have enough mutations to reliably construct a tree.

The second step is to construct pairwise and multiple sequence alignments from these se-
quences.

The third step is to choose a method for constructing a phylogenetic tree. There exist 3 cate-
gories: distance-based, maximum parsimony, and maximum likelihood.

Maximum parsimony should be chosen for strong sequence similarities because too much
variation results in many possible trees. For the same reason only few sequences (less than 15)
should be used. Distance based methods (e.g. clustalW) require less similarity among the se-
quences than maximum parsimony methods but sequence similarities should be present. Some
sequences should be similar to one another and others are less similar. Distance based methods
can be applied to a set of many sequences. Maximum likelihood methods may be used for very
variable sequences but the computational costs increase with the number of sequences as every
possible tree must be considered.

Software for phylogenetic analysis:

Name Author URL
PHYLIP Felsenstein 1989, 1996 http://evolution.genetics.washington.edu/phylip.html

PAUP Sinauer Associates http://paup.csit.fsu.edu/

5.2 Maximum Parsimony Methods

The number of mutations should be minimized. Mutations are represented as branches in the tree
which explains the evolution of the sequences. If surviving mutations are rare, i.e. occur with small
probability, then the tree with minimal mutations is the most likely explanation of the evolution of
the observed sequences.

PHYLIP programs DNAPARS, DNAPENNY, DNACOMP, DNAMOVE, and PROTPARS are
based on maximum parsimony methods.

5.2.1 Tree Length

The maximum parsimony tree is the tree with smallest tree length. Tree length is the number of
substitutions represented by the tree, where sequence symbols are assigned to the internal nodes.

For example an aligned subsequence of the protein triosephosphate isomerase for the taxa
“Human”, “Pig”, “Rye”, “Rice”, and “Chicken” is:

http://evolution.genetics.washington.edu/phylip.html
http://paup.csit.fsu.edu/
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taxa position
1 2 3 4 5 6

Human I S P G M I

Pig I G P G M I

Rye I S A E Q L

Rice V S A E M L

Chicken I S P A M I

If we focus on column 4:

taxa amino acid
Human G

Pig G

Rye E

Rice E

Chicken A

Fitch, 1971, proposed an algorithm for computing the tree length for a tree topology with taxa
assigned to the leaves. Note, that here the amino acids at a certain position of certain protein
sequences represent the taxa. See Fig. 5.6 for an example of a tree topology.

1. Root node is added to an arbitrary branch and the taxa are replaced by the according symbol.
See the tree resulting from adding a root to the example in Fig. 5.7.

2. A bottom-up pass generates sets of symbols (amino acids) which are possible at a hypotheti-
cal sequence at this node. The hypothetical sequences are chosen to minimize the number of
mutations by finding the maximal agreement of the subtrees, i.e. by choosing the maximal
set which is subset of both subtree roots. This set allows to avoid a mutation at the actual
node. The bottom up pass starts at the leaves.

m12 =


{“leaf symbol”} if m1 = m2 = ∅
m1 ∪m2 if m1 ∩ m2 = ∅
m1 ∩m2 if m1 ∩ m2 6= ∅

(5.1)

In the first case m12 is leaf, the second case enforces a mutation, and the third case avoids
a mutation. Fig. 5.8 depicts the relation between the sets m12, m1, and m2. Fig. 5.9 shows
the result after the bottom-up pass for the example.

3. A top down pass generates special hypothetical sequences at the interior nodes of the tree
and counts the number of mutations. The top down pass starts at the root.

m1/2 =

{
x ∈ m1/2 ∩ m12 if m1/2 ∩ m12 6= ∅
x ∈ m1/2 if m1/2 ∩ m12 = ∅ (5.2)

m1/2 means that the formula hold both for m1 and for m2. Any x can be chosen which
fulfills the conditions. Fig. 5.10 shows one result after the top-down pass for the example.
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Figure 5.6: A tree topology to which a root node is added.

Figure 5.7: The tree after the root node is added.

Figure 5.8: Root set m12 is constructed from left set m1 and right set m2.



5.2. Maximum Parsimony Methods 109

Figure 5.9: The tree after the bottom up pass. Each node has its set of symbols constructed from
the subtrees of the node.

Figure 5.10: The tree after the top down pass. Mutations are now marked by a crossed branch.
This tree contains three mutations at the column under consideration. Branches which are not
marked have mutations at other columns.
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The number of mutation can be either counted during the bottom-up or top-down pass.

Note that columns with maximal or minimal entropy, i.e. where all symbols occur only once in
the column or with only one symbol in the column, are not used. Only one symbol in the column
means no mutation and symbols which occur only once lead to the same number of mutation in
all topologies. Also if one symbol occurs multiple times and others only once then the number of
mutation is the same for each reasonable tree topology because each single symbol is obtained by
one mutation from another symbol.

Next we give some evaluation criteria for the different trees. The consistency index ci is the
minimal number of substitutionsmi for a column divided by the number of substitutions si for the
topology at hand:

ci =
mi

si
. (5.3)

High values of ci support the according tree as being plausible. Using gi, the number of maximal
substitutions at a column for a star tree topology with the most frequent symbol in the center, the
retention index ri (a measurement how informative the column is) and the re-scaled consistency
index rci are

ri =
gi − si
gi −mi

and (5.4)

rci = ri ci . (5.5)

5.2.2 Tree Search

For a small number of sequences all trees can be constructed and their tree length computed, i.e.
the trees are found by exhaustive search. However for a larger number of sequences not all trees
can be considered. Therefore heuristics will find the most plausible trees.

5.2.2.1 Branch and Bound

The “branch and bound” algorithm has been introduced by Hendy and Penny, 1982. 20 and more
taxa can be processed.

The algorithm works as follows:

1. This step determines the addition order for the taxa used in later steps. The algorithm starts
with a core tree of three taxa which has the maximal length of all three taxa trees. Next
taxa are added to each of the three branches. The taxa is chosen next and inserted into the
queue which leads to a tree with maximal tree length. For the tree with four branches we
determine the next taxa which can be added and leads to the maximal tree length. At the
end we have a sorted taxa list.

2. This step determines an upper bound for the tree length. The upper bound can be computed
either through distance based methods like neighbor joining (see next section) or a heuristic
search like the stepwise addition algorithm (see below).



5.2. Maximum Parsimony Methods 111

Figure 5.11: Example for constructing trees with the brunch-and-bound method. Trees with STOP
mark do not possess successors because their tree length exceeds the upper bound.

3. The algorithm starts with the core tree of three taxa.

4. Construct new tree topologies. The topologies are constructed by stepwise adding new taxa
to the trees which do not possess a STOP mark. The next taxa is chosen according to the
list in step 1. The next taxa is added to each tree without a STOP mark at all of its branches.
All tree lengths are computed.

5. Assign STOP marks. If a tree length reaches or exceeds the upper bound then this tree will
not produce successors and will receive a STOP mark. If all trees possess a STOP mark
then terminate else go to step 4.

See Fig. 5.11 for an example for the Branch and Bound algorithm.

5.2.2.2 Heuristics for Tree Search

5.2.2.2.1 Stepwise Addition Algorithm At each step only the tree with shortest length does
not obtain a STOP mark and is extended. If all taxa are inserted then the tree is optimized by
branch swapping (see below). Instead of adding only one taxa also small sets of taxa e.g. all
triplets can be considered.
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5.2.2.2.2 Branch Swapping Either nearest (1) neighbor interchange, (2) subtree pruning and
re-grafting, or (3) bisection-reconnection can be applied. The first algorithm exchanges in each
optimization step two taxa connected to the same interior branch. The second algorithm cuts the
tree into two parts: the pruned subtree and the residual tree (the part taken away from the original
tree giving the pruned subtree). The residual tree is now attached with its root to each branch of the
pruned tree. The third algorithm extends the second algorithms. Here the original tree is cut into
two subtrees by removing a branch. Then two branches of the subtrees (one of each) are joined by
inserting a new branch to a new topology. This extends the second algorithm because not only the
root is attached but all branches.

5.2.2.2.3 Branch and Bound Like Instead of selecting the maximal tree length in step 1. of
the branch-and-bound algorithm the minimal tree is selected. The upper bound is updated during
constructing new trees. Towards this end upper bounds Un are constructed for n taxa added. In
this way the branch-and-bound algorithm is modified to local bounds.

5.2.3 Weighted Parsimony and Bootstrapping

The type of substitution is weighted according to a substitution matrix. We already encountered
PAM and BLOSUM matrices. This gives a more precise value of tree length because the survival
of substitutions is taken into account, e.g. the chemical similarity of amino acids.

Bootstrapping is used to access the variability of the tree with respect to the data (“variance” in
statistics) and to identify structures which do not vary with the data. Thus a value for uncertainty
is obtained. The data for parsimony trees are the columns of the alignment. The temporal order of
these columns does not matter. Therefore columns can be chosen randomly to generate a new data
set from which another tree can be constructed. Bootstrap cannot access the quality of a method
(“bias” in statistics) but only the robustness with respect to the data.

5.2.4 Inconsistency of Maximum Parsimony

In Fig. 5.12 an example is shown, where a and b are similar to each other. Sequences c and d
are not similar to any other sequence. Assume a and b match to 99%. c or d match by chance
to other sequences in 5% (1 out of 20) of the cases. Informative columns are those which contain
only two symbols and each symbol appears twice. We obtain for the probabilities of informative
columns and their rate (number of informative columns of this kind divided through all informative
columns):

ai = bi, ci = di : prob: 0.0495(0.99 · 0.05) rate: 0.908 (5.6)

ai = ci, bi = di : prob: 0.0025(0.05 · 0.05) rate: 0.046 (5.7)

ai = di, bi = ci : prob: 0.0025(0.05 · 0.05) rate: 0.046 (5.8)

In more than 90% of the cases of informative columns we observe ci = di. Maximum parsimony
will judge c and d as being similar to one another as a and b and will construct a wrong tree.
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Figure 5.12: An example where maximum parsimony is inconsistent. Left: the true tree. Right:
tree from maximum parsimony. Sequence a and b are similar to each other. Sequences c and d are
not similar to any other sequence. For long sequences maximum parsimony may be inconsistent.
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Figure 5.13: Three sequences where the triangle inequality does not hold for the e-value (d(1, 3) ≤
d(1, 2) + d(2, 3)). Sequence 1 and 2 as well as sequence 2 and 3 have matching regions but
sequence 1 and 3 do not have matching regions.

5.3 Distance-based Methods

We assume that we are given the matrix of pairwise distances between the sequences. A distance
D is produced by a metric d on objects x indexed by i, j, k. The distance Dij between object xi
and object xj is

Dij = d(xi, xj) , (5.9)

where the metric d must fulfill

d(xi, xj) ≥ 0 , (5.10)

d(xi, xj) = 0 for i = j , (5.11)

d(xi, xj) = d(xj , xi) , (5.12)

d(xi, xj) ≤ d(xi, xk) + d(xk, xj) . (5.13)

The last condition is the triangle inequality.

How to compute distances is considered later. Note, that not all scoring schemes are a metric.
For example the e-value from the BLAST search. Small e-value means related sequences, i.e.
small distance. But as depicted in Fig. 5.13 the triangle inequality may be violated. The e-value
between sequence 1 and 3 is larger than the sum of the e-values between sequences 1 and 2 and
sequences 2 and 3.
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5.3.1 UPGMA

One of the classical tree construction algorithms is the Unweighted Pair Group Method using
arithmetic Averages (UPGMA). UPGMA is actually a constructive clustering method based on
joining pairs of clusters.

It works as follows:

1. Initially, each sequence i is a cluster ci with one element ni = 1. The height li of each
cluster is zero. Put all i into a list.

2. Select cluster pair (i, j) from the list with minimal distance Dij and create a new cluster
ck by joining ci and cj . Assign the height lk = Dij/2 and the number of elements
nk = ni + nj .

3. Compute the distances for the new cluster ck to other clusters cm:

Dkm =
ni Dmi + nj Dmj

ni + nj
. (5.14)

The formula ensures that Dkm is the average distance of all elements in ck and cm.

4. Remove i and j from the list and add k to the list. If the list contains only one element then
terminate else go to step 2.

For a detailed example of the UPGMA algorithm see Appendix C.

The assumption of constant rate of evolution in the different lineages must hold to ensure that
the distance measure really measures evolutionary distances.

Again bootstrapping can evaluate the reliability of the result to data variation (robustness).
Whether all interior branches are positive can be tested to evaluate the quality of the tree.

5.3.2 Least Squares

The idea of the least squares method is to minimize the differences between the observed distance
Dij and the distances Eij in the tree. Eij is the sum of distances (assigned to branches) in the tree
on the path from taxa i to taxa j (the path metric). Therefore, Eij is an estimate how far taxa i
evolved apart from the common ancestor of taxa i and j plus how far taxa j evolved apart from
the common ancestor.

The objective is∑
i<j

(Dij − Eij)
2 . (5.15)

Fitch and Margoliash, 1967, extended this approach to the weighted least squares method by
using as objective∑

i<j

(Dij − Eij)
2 /D2

ij . (5.16)
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The objective is optimized under the constraint of nonnegative branch length.

If matrix A is the binary topology matrix with N(N − 1)/2 rows – one for each Dij – and v
columns for the v branches of the topology. In each row (i, j) all branches contained in the path
from i to j are marked by 1 and all other branches are 0.

l is the v-dimensional vector of branch weights. We obtain

E = A l (5.17)

The least squares assumption is thatDij deviates fromEij according to a Gaussian distribution
εij with mean 0 and variance D2

ij :

D = E + ε = A l + ε . (5.18)

The maximum likelihood estimator (least squares) is

l̂ =
(
ATA

)−1
ATD . (5.19)

The Gaussianity assumption is justified by sufficiently large sequences because in such cases
the li are Gaussian and, therefore, also Dij .

5.3.3 Minimum Evolution

The objective is the sum of branch lengths l

L =
∑
ij

l̂ij . (5.20)

Given an unbiased branch length estimator l̂, the expected value of L is smallest for the true
topology independent of the number of sequences (Rzhetsky and Nei, 1993).

Minimum evolution is computationally expensive.

5.3.4 Neighbor Joining

The neighbor joining method was introduced by Saitou and Nei, 1987, and and simplifies the
minimum evolution method (for fewer than six taxa both methods give the same result).

The taxa are grouped together like in the UPGMA method.

Neighbors are taxa that are connected by a single node.

For an additive metric d any four elements can be indexed by i, j, k and m in order to fulfill

d(i, j) + d(k,m) ≤ d(i, k) + d(j,m) = d(i,m) + d(j, k) . (5.21)

The path metric (counting the branch/edge weights of the path) is an additive metric. An additive
metric can be represented by a unique additive tree.
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Figure 5.14: Four point condition of an additive metric.

Figure 5.15: Construction of an additive tree from an additive metric. Node v is inserted.
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In Fig. 5.15 the construction of an additive tree is depicted. A node v is inserted with distances:

Dvk =
1

2
(Dik + Djk − Dij) (5.22)

Div =
1

2
(Dij + Dik − Djk) (5.23)

Djv =
1

2
(Dij + Djk − Dik) . (5.24)

The additive tree conditions fulfill above constraints, and vice versa.

Dij = Div + Dvj (5.25)

Dik = Div + Dvk (5.26)

Djk = Djv + Dvk . (5.27)

The objective of the neighbor joining algorithm is S the sum of all branch lengths lij (the
branch between taxa or node i and taxa or node j). The algorithm starts with a star tree.

In subfigure a) of Fig. 5.16 the initial star tree is depicted with internal node X .

We assume N taxa. The initial (star tree) objective S0 is

S0 =

N∑
i=1

liX =
1

N − 1

∑
i,j;i<j

Dij , (5.28)

where the 1
N−1 comes from the fact that Dij = liX + lXj , therefore liX is part of N − 1 distances

Dij .

In the next step taxa 1 and 2 are joined and a new internal node Y is introduced as depicted in
subfigure b) of Fig. 5.16.

Because we assume an additive tree the branch length lXY can be computed:

lXY =
1

2(N − 2)
(5.29)(

N∑
i=3

(D1i +D2i) − (N − 2) (l1Y + l2Y ) − 2
N∑
i=3

lXi

)
.

This equation is obtained from setting all paths from i to j containing lXY equal toDij and solving
for lXY . These are all paths from node 1 to nodes i ≥ 3 and all paths from node 2 to nodes i ≥ 3.
Therefore (N − 2) paths start from node 1 and (N − 2) paths start from node 2 giving 2(N − 2)
paths. l1Y is contained in all paths starting from node 1 (similar for l2Y ). The tail liX is contained
in one path starting from 1 and one path starting from 2. We have 2(N − 2) solutions for lXY . A
least square fit just averages over these solutions and we obtain above equation.

Similar as for the initial star tree we obtain

N∑
i=3

lXi =
1

N − 3

∑
i,j;3≤i<j

Dij , (5.30)
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Figure 5.16: a) An initial star tree; b) the tree resulting from the star tree if neighbors A and B are
joined; c) the tree resulting from the tree in b) by joining AB and D.

which can be inserted into the last equation.

For the new objective S12 after joining taxa 1 and 2 we obtain

S12 = l1Y + l2Y + lXY +
N∑
i=3

lXi = (5.31)

1

2(N − 2)

N∑
i=3

(D1i +D2i) +
1

2
D12 +

1

N − 2

∑
i,j;3≤i<j

Dij .

The last equation can be generalized from joining 1 and 2 to joining k and l. We introduce
variables rk called net divergences, which give the accumulated distances of k to all other taxa:

rk =

N∑
i=1

Dki . (5.32)

Now the objective of joining k and l can be expressed as

Skl =
2
∑

i,j;i<j Dij − rk − rl

2(N − 2)
+

Dkl

2
. (5.33)

Because

2
∑

i,j;i<j Dij

2(N − 2)
(5.34)

is constant for all objectives Skl an equivalent objective after a linear transformation (adding a
constant and re-scaling) is

Qkl = (N − 2) Dkl − rk − rl . (5.35)

If k and l are evolutionary neighbors but Dkl is large due to fast evolution of k and/or l, then this
will result in large rk and/or rl. Therefore, Qkl will be small.

The algorithm works as follows:
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Figure 5.17: An initial star tree with center X and the tree resulting from the star tree if neighbors
1 and 2 are joined and hidden node Y is introduced.

1. Given Dij start with a star tree (the taxa are the leaves). Put all taxa in a set of objects.

2. For each leaf i compute

ri =

N∑
k=1

Dik . (5.36)

3. For each pairs of leaves (i, j) compute

Qij = (N − 2) Dij − ri − rj . (5.37)

4. Determine the minimal Qij . Join the according leaves i and j to a new leaf u. Compute
branch lengths

liu =
Dij

2
+

ri − rj
2(N − 2)

(5.38)

lju = Dij − liu .

Compute new distances of u:

Dku =
Dik + Djk − Dij

2
. (5.39)

Delete i and j from the set of objects. Add u to the set of objects. Stop if the set of objects
contains only one object otherwise go to Step 1.

For a detailed example of the neighbor joining algorithm see Appendix C.

Neighbor joining is an O(N3) algorithm and is useful for larger data sets. The formula for
Qij accounts for differences in evolution rates. The objective S (sum of all branch lengths) is not
minimized directly.

ClustalW uses neighbor-joining as guide for multiple alignments.
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Figure 5.18: Leaves i and j are joined to new leaf u.

5.3.5 Distance Measures

Here we focus on distances between nucleotides.

The basis for deriving distances is an assumption on the substitution rates between nucleotides.

5.3.5.1 Jukes Cantor

The probability of a mutation is

r = 3α . (5.40)

Given two sequences x and y, the probability that an identical position remains identical in the
next step is the product that the position does not mutate in both sequences:

(1 − r)2 ≈ 1 − 2 r . (5.41)

The probability that a position with different nucleotides will have the same in the next step is

2 r

3
. (5.42)

This value is obtained because either the nucleotide in x or the nucleotide in y may change and
the other remains constant: α (1 − r) = r

3 (1 − r). Two of these events exist, therefore we
obtain: 2 r

3 (1 − r) ≈ 2 r
3 . We now can formulate a difference equation:

qt+t = (1 − 2 r) qt +
2 r

3
(1 − qt) (5.43)
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A T C G
Jukes Cantor

A α α α
T α α α
C α α α
G α α α

Kimura
A β β α
T β α β
C β α β
G α β β

Felsenstein / Tajima-Nei
A α gT α gC α gG
T α gA α gC α gG
C α gA α gT α gG
G α gA α gT α gC

Tamura
A β (gA + gT ) β (gG + gC) α (gG + gC)
T β (gA + gT ) α (gG + gC) β (gG + gC)
C β (gA + gT ) α (gA + gT ) β (gG + gC)
G α (gA + gT ) β (gA + gT ) β (gG + gC)

Hasegawa
A β gT β gC α gG
T β gA α gC β gG
C β gA α gT β gG
G α gA β gT β gC

Tamura-Nei
A β gT β gC αAG gG
T β gA αTC gC β gG
C β gA αTC gT β gG
G αAG gA β gT β gC

Reversible
A αAT gT αAC gC αAG gG
T αAT gA αTC gC αTG gG
C αAC gA αTC gT αCG gG
G αAG gA αTG gT αCG gC

General
A a12 a13 a14
T a21 a23 a24
C a31 a32 a34
G a41 a42 a43

Table 5.1: Different models of nucleotide substitution. A matrix entry aij is the substitution rate
from the nucleotide in the i-th row to the nucleotide in the j-th column. gA, gT , gC , and gG are
the nucleotide frequencies.
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for the proportion of identical nucleotides qt at time step t. This is

qt+t − qt =
2 r

3
− 8 r

3
qt (5.44)

and leads in a continuous model to

q̇ =
2 r

3
− 8 r

3
q (5.45)

with the solution (q(0) = 1)

q(t) = 1 − 3

4

(
1 − exp

(
−8 r t

3

))
. (5.46)

The substitution per position, denoted by d, for two sequences is 2rt (2r is the approximated
probability of a change in one time step) leading to

d = −3

4
ln

(
1 − 3

4
p

)
, p = 1 − q . (5.47)

Estimating q by q̂ (the observed identical nucleotides) and inserting the estimated value in above
equation leads to the estimate d̂ of d.

The variance of d̂ is

Var(d̂) =
9p (1 − p)

(3 − 4p)2 n
. (5.48)

5.3.5.2 Kimura

In contrast to previous model, r must be changed to

r = α + 2β . (5.49)

Let us group nucleotide pairs of x and y as follows:

P = {AG,GA,TC,CT} (5.50)

Q = {AT,TA,AC,CATG,GT,CG,GC}

We obtain

P =
1

4
(1 − 2 exp (−4 (α + β) t) + exp (−8 β t)) (5.51)

Q =
1

2
(1 − exp (−8 β t))
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leading to

d = 2 r t = 2 α t + 4 β t = (5.52)

−1

2
ln (1 − 2 P − Q)− 1

2
ln (1 − 2 Q) .

The variance is given by

Var(d̂) =
1

n

(
c2

1 P + c2
2 Q − (c1 P + c2 Q)2

)
(5.53)

c1 = (1 − 2 P − Q)−1

c2 =
1

2

(
(1 − 2 P − Q)−1 + (1 − 2 Q)−1

)
.

Advantage of this model is that transitional (2 α t) and transversional (4 β t) nucleotide sub-
stitutions can be estimated.

The equilibrium frequency of each nucleotide is 0.25, which is not in agreement with the ob-
servations. For example the occurrence of GC (θ) differs from 0.5 as in Drosophila mitochondrial
DNA with 0.1.

5.3.5.3 Felsenstein / Tajima-Nei

Using xij for the relative frequency of nucleotide pair (i, j) we define

b =
1

2

(
1 −

4∑
i=1

g2
i +

p2

c

)
(5.54)

c =
3∑
i=1

4∑
j=i+1

x2
ij

2 gi gj
.

The number of nucleotide substitutions and its variance is given by

d = −b ln
(

1 − p

b

)
(5.55)

Var(d̂) =
b2 p (1 − p)

(b − b)2n
. (5.56)

5.3.5.4 Tamura

This model extends Kimura’s model for GC content θ different from 0.5.

The number of nucleotide substitutions is

d = −h ln

(
1 − P

h
−Q

)
− 1

2
(1 − h) ln (1 − 2 Q) (5.57)

h = 2 θ (1 − θ) .
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5.3.5.5 Hasegawa (HKY)

Hasegawa’s model (HKY) is a hybrid of Kimuras’s model and the model of Felsenstein / Tajima-
Nei. It accounts for GC content and for transition / transversion.

5.3.5.6 Tamura-Nei

This model includes Hasegawa’s model.

The expression for d is more complicated than in previous models.

First we define

gR = gA + gG (5.58)

gY = gT + gC (5.59)

c1 =
2 gA gG
gR

(5.60)

c2 =
2 gT gC
gY

(5.61)

and obtain

d = − c1 ln
(

1 − c−1
1 P1 − (2 gR)−1 Q

)
− (5.62)

c2 ln
(

1 − c−1
2 P2 − (2 gY )−1 Q

)
−

(2 gR gY − c1 gY − c2 gR) ln
(

1 − (2 gR gY )−1Q
)
.

P1 is the proportion of transitional differences between A and G. P2 is the proportion of
transitional differences between T and C. Q is the proportion of transversional differences.

5.4 Maximum Likelihood Methods

The probability of the tree is the product of the mutation rates in each branch. The mutation rate
is the product between the substitution rate and the branch length. Models for the substitution rate
are given in Tab. 5.1.

The data D is the multiple alignment of the sequences from the N taxa. Dk is the N -
dimensional vector at position k of the multiple alignment. We are given a tree with topology
A and branch length l. Let H be the number of hidden nodes of a given topology A. Hidden
nodes are indexed from 1 to H and taxa are indexed from H+ 1 to H+N . Without loss of gener-
ality, the root node is indexed by 1. Further we assume a modelM for the nucleotide substitution.
Let A be the set of letters. The likelihood of the tree at the k-th position is

L(Dk | l,A,M) = (5.63)
H∑
h=1

∑
ah∈A

Pr (a1)
∏

i,j; 1≤i≤H, i<j≤N+H, Aij=1

Paiaj (lij) ,
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where Pr (a1) is the prior probability of the root node assigned with letter a1 inA. The expression
Aij = 1 indicates an existing branch i → j in the topology A. Paiaj (lij) is the probability
of branch length lij between nucleotides ai and aj . The hidden states are summed out in above
likelihood expression. The prior is obtained from the nucleotide frequencies or is estimated.

IfM is the Felsenstein / Tajima-Nei equal-input model, the branch length probabilities are

Paiai (lii) = gai + (1 − gai) e
−lii (5.64)

Paiaj (lij) = gaj

(
1 − e−lij

)
. (5.65)

For gai = 1
4 and lij = 4rt we obtain the Jukes-Cantor model from above, where Paiai was

denoted by q.

For reversible models

gai Paiaj (l) = gaj Pajai (l) (5.66)

the choice of the root does not matter because branch lengths count independent of their substitu-
tion direction.

Under the assumption that all positions are independent from each other the likelihood is given
by

L(D | l,A,M) =
∏
k

L(Dk | l,A,M) . (5.67)

The likelihood L(Dk | l,A,M) for a position k can be computed via Felsenstein’s (1981)
pruning algorithm.

Pi(a) = Pi (a |Dk, l,A,M) denotes the probability of a letter a at node i given data Dk,
branch length l, topologyA and modelM. We obtain the recursive formula

Pi(ai) = δai Dk(i−H)
for i > H(i taxa) (5.68)

Pi(ai) =
∏

j; Aij=1

∑
aj∈A

Paiaj (lij) Pj (aj)

 for i ≤ H(i hidden) , (5.69)

where δa b is 1 for a = b and 0 otherwise. Using the idea of dynamic programming the values
Pi(a) can be computed from the taxa (leaves) to the root, where zero values are not propagated
further.

The Likelihood can be computed as

L(Dk | l,A,M) =
∑
a1∈A

Pr (a1)P1 (a1) . (5.70)

To find the best tree both the branch length and the topology must be optimized.



5.5. Examples 127

To optimize the branch length the likelihood can be optimized directly via gradient based
approaches like the Newton method. Alternatively an EM (expectation-maximization, Dempster
et al., 1977) algorithm can be used, which maximizes a lower bound on the likelihood.

For the optimization of the tree topology Felsenstein (1981) applied a growing (constructive)
algorithm (cf. neural networks: cascade correlation). Start with 3 taxa and for the k-th taxa test
all (2k − 5) branches as insertion point. The tree is then further optimized by local changing the
topology.

For small N all topologies can be tested. Also local changes similar to the parsimony tree
optimization can be applied.

The ML estimator is computationally expensive. A fast heuristic was introduced by Strimmer
and v. Haeseler (1996) which optimizes all topologies of 4 taxa and then constructs the final tree
(software: http://www.tree-puzzle.de/).

The ML estimation is unbiased, i.e. for the sequence length going to infinity (asymptotically)
the ML tree is the true tree. The ML method is asymptotically efficient, i.e. the estimator with
minimal variance (variance of the solutions if the same number of examples are randomly drawn).

5.5 Examples

In this experiment we compare triosephosphate isomerase of different species in order to con-
struct a phylogenetic tree. We used the PHYLIP (Phylogeny Inference Package) Version 3.5c for
constructing the trees.

In the first experiment we construct a phylogenetic tree for:

EColi Escherichia coli Bacterium
VibMar Vibrio marinus Bacterium
Chicken Gallus gallus Animal
Human Homo sapiens Animal
Nematode Caenorhabditis elegans Worm
Yeast Saccharomyces cerevisiae Yeast
Pfalcip Plasmodium falciparum single cell
Amoeba Entamoeba histolytica single cell
TBrucei Trypanosoma brucei single cell
TCruzi Trypanosoma cruzi single cell
LeiMex Leishmania mexicana single cell
Bacillus Bacillus stearothermophilus Bacterium
ThMar Thermotoga maritima Bacterium
Archaeon Pyrococcus woesei Archaeon

Figures 5.19, 5.20, 5.21, and 5.22 show the results.

In the second experiment we construct a phylogenetic tree again based on triosephosphat iso-
merase for: Human, Monkey, Mouse, Rat, Cow, Pig, Goose, Chicken, Zebrafish, Fruit FLY, Rye,
Rice, Corn, Soybean, Bacterium. Figures 5.23, 5.24, 5.25, and 5.26 show the results.

http://www.tree-puzzle.de/
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Figure 5.19: The Fitch-Margoliash method for constructing a phylogenetic tree for the taxa of
experiment 1.

Figure 5.20: The Fitch-Margoliash method under the assumption of molecular clock (“kitsch”) for
constructing a phylogenetic tree for the taxa of experiment 1.
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Figure 5.21: The neighbor joining method for constructing a phylogenetic tree for the taxa of
experiment 1.

Figure 5.22: The UPGMA method for constructing a phylogenetic tree for the taxa of experiment
1.
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Figure 5.23: The Fitch-Margoliash method for constructing a phylogenetic tree for the taxa of
experiment 2.

Figure 5.24: The Fitch-Margoliash method under the assumption of molecular clock (“kitsch”) for
constructing a phylogenetic tree for the taxa of experiment 2.
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Figure 5.25: The neighbor joining method for constructing a phylogenetic tree for the taxa of
experiment 2.

Figure 5.26: The UPGMA method for constructing a phylogenetic tree for the taxa of experiment
2.
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Figure 5.27: Relation humans, chimpanzees, gorillas, oran utans and gibbons (part 1).

An interesting scientific research focus on the relationship between humans and apes. Figures
5.27 and 5.28 show the latest results on this topic.

Finally a phylogenetic tree from a very special point of view is given in Fig. 5.29.
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Figure 5.28: Relation humans, chimpanzees, gorillas and oran utans (part 2).

Figure 5.29: Tree of life from a special perspective.
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Appendix A

Amino Acid Characteristics

Amino acid features are listed. The mass, surface area, volume, pKa (acid-ionization constant,
indicates the extent of dissociation of hydrogen ions from an acid), pI (isoelectric point, pH at
which the molecule carries no electrical charge), solubility, density (see Tab. A.2) and solvent
accessible area (see Tab. A.1) is given.

Amino Acid SEA >30 Å2 SEA <10 Å2 30 Å2 > SEA >10 Å2

S 0.70 0.20 0.10
T 0.71 0.16 0.13
A 0.48 0.35 0.17
G 0.51 0.36 0.13
P 0.78 0.13 0.09
C 0.32 0.54 0.14
D 0.81 0.09 0.10
E 0.93 0.04 0.03
Q 0.81 0.10 0.09
N 0.82 0.10 0.08
L 0.41 0.49 0.10
I 0.39 0.47 0.14
V 0.40 0.50 0.10
M 0.44 0.20 0.36
F 0.42 0.42 0.16
Y 0.67 0.20 0.13
W 0.49 0.44 0.07
K 0.93 0.02 0.05
R 0.84 0.05 0.11
H 0.66 0.19 0.15

Table A.1: Solvent accessibility of amino acids in known protein structures (D. Bordo and P.
Argos, J. Mol. Biol. 217(1991)721-729). “SEA” means solvent exposed area.
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mass surface volume pKa pI solubility density
[dalton] [Å2] [Å3] [side ch.] [25◦C] [g/100g] [g/ml]

A 71.09 115 88.6 - 6.107 16.65 1.401
R 156.19 225 173.4 12 10.76 15 1.1
D 114.11 150 111.1 4.5 2.98 0.778 1.66
N 115.09 160 114.1 - - 3.53 1.54
C 103.15 135 108.5 9.1-9.5 5.02 very high -
E 129.12 190 138.4 4.6 3.08 0.864 1.460
Q 128.14 180 143.8 - - 2.5 -
G 57.05 75 60.1 - 6.064 24.99 1.607
H 137.14 195 153.2 6.2 7.64 4.19 -
I 113.16 175 166.7 - 6.038 4.117 -
L 113.16 170 166.7 - 6.036 2.426 1.191
K 128.17 200 168.6 10.4 9.47 very high -
M 131.19 185 162.9 - 5.74 3.381 1.340
F 147.18 210 189.9 - 5.91 2.965 -
P 97.12 145 112.7 - 6.3 162.3 -
S 87.08 115 89.0 - 5.68 5.023 1.537
T 101.11 140 116.1 - - very high -
W 186.12 255 227.8 - 5.88 1.136 -
Y 163.18 230 193.6 9.7 5.63 0.0453 1.456
V 99.14 155 140.0 - 6.002 8.85 1.230

Table A.2: Chemical properties of amino acids. Given are surface (C.Chothia, J. Mol. Biol.,
105(1975)1-14), volume (A.A. Zamyatin, Prog. Biophys. Mol. Biol., 24(1972)107-123), pKa
(C. Tanford, Adv. Prot. Chem., 17(1962)69-165), and pI/solubility/density (The Merck Index,
Merck & Co. Inc., Nahway, N.J., 11(1989); CRC Handbook of Chem.& Phys., Cleveland, Ohio,
58(1977)).



Appendix B

A∗-Algorithm

The A∗-algorithm can be used to improve the MSA. Bounds on the score of the projection of the
optimal multiple alignment are used as approximative distance to the goal.
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Algorithm B.1 A∗-algorithm.

Input: graph (the graph), start (start node), goal (goal node), h(s) approximation of the dis-
tance of node s to the goal, S (priority queue), N (list of visited nodes)

Output: list P of the shortest path

BEGIN FUNCTION
insert (start,S)
while not isEmpty(S) do

current_node = pop(S)
if current_node in N then {no path from start to goal}

return “no path”
end if
insert (current_node, N)
if current_node = goal then

reconstruct_shortest_path(start,goal, graph)
else {find all nodes accessible from current node}

successors = expand(current_node, graph)
save_predecessor_in_graph(current_node, graph)
for all s in successors do {save nodes which lead to s}

predecessor(s) = current_node {compute and store costs}
cost(s) = cost(current_node) + edge(graph,current_node,s)
all_cost(s) = cost(s) + h(s)
insert(s,S) {according to all_cost(s)}

end for
end if

end while
return “no path found”

END FUNCTION

BEGIN SUBFUNCTION
reconstruct_shortest_path (start, node, graph) {shortest path P as list}

if node not= start then
push(node, P) {get predecessor}
predecessor = getPredecessor(node, graph)
reconstruct_shortest_path (start, predecessor, graph)

else
return P

end if
END SUBFUNCTION
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Examples

This chapter gives examples for some of the algorithms discussed in the lecture.

C.1 Pairwise Alignment

C.1.1 PAM Matrices

The PAM1 matrix is calculated as follows:

Figure C.1: Phylogenetic tree for the calculation of the PAM1 matrix.

1. Start at the top of the tree and count all transitions of amino acid i to j to get Cunsymi,j :
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Cunsymi,j :

A -> C: | C -> A: 0
A -> G: | G -> A: |
A -> T: | T -> A: 0
C -> G: 0 G -> C: ||
C -> T: 0 T -> C: |
G -> T: || T -> G: |

Cunsym =

A C G T
A - 1 1 1
C 0 - 0 0
G 1 2 - 2
T 0 1 1 -

2. Symmetrize Cunsymi,j using the formula Csymi,j = 1
2

(
Cunsymi,j + Cunsymj,i

)
:

Csym =

A C G T
A - 0.5 1 0.5
C 0.5 - 1 0.5
G 1 1 - 1.5
T 0.5 0.5 1.5 -

3. Determine the relative frequencies of the individual amino acids by dividing their number
of occurrence in the sequences of the tree by the total number of amino acids in the tree:

fA = no. of As in all sequences
length of sequences * no. of sequences = 10

35

fC = 4
35

fG = 6
35

fT = 15
35

4. The PAM1 is obtained by calculating the values for pi,j using the formulas:

pi,j =
Ci,j

100 fi
∑

k

∑
l 6=k Ck,l

and

pi,i = 1 −
∑

j 6=i pi,j

e.g.: pAC = CAC
100 fA10

pAA = 1 − (pAC + pAG + pAT )

PAM1 = p =

A C G T
A 0.99300 0.00175 0.00350 0.00175
C 0.00438 0.98250 0.00875 0.00438
G 0.00583 0.00583 0.97958 0.00875
T 0.00117 0.00117 0.00350 0.99417

5. The odds scores are calculated by comparing the probability that amino acid i is present and
mutates into amino acid j with the probability of randomly selecting amino acids i and j,
which results in the following formula:
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fi pi,j
fi fj

=
pi,j
fj

=
pj,i
fi

odds scores =

A C G T
A 3.47550 0.01531 0.02047 0.00408
C 0.01531 8.59688 0.05104 0.01020
G 0.02047 0.05104 5.71424 0.02042
T 0.00408 0.01020 0.02042 2.31972

6. Finally we apply the base 2 logarithm to get the log-odds scores and round the resulting
values to integers to get the PAM1 scoring matrix:

PAM1 scoring matrix =

A C G T
A 2 -6 -6 -8
C -6 3 -4 -7
G -6 -4 3 -6
T -8 -7 -6 1
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C.1.2 BLOSUM Matrices

We use the following sequences to calculate BLOSUM75:

V I I L
V I I I
L I V V
L L V I
V L L I
V L L L

1. For BLOSUM75 we need to cluster sequences with at least 75% identity which corresponds
to 3 identical amino acids for sequences of length 4.

c1 = V I I [0.5 L 0.5 I]
c2 = L I V V
c3 = L L V I
c4 = V L L [0.5 I 0.5 L]

2. For each column k of the sequences we calculate the occuring pairs of amino acids i and j
using

cki,j =


1
2

((
nki
)2 − ∑

l

(
fki,l

)2
)

for i = j

nki n
k
j −

∑
l f

k
i,l f

k
j,l for i 6= j

where fki,l is the frequency of amino acid i in the k-th column for the l-th cluster and
nki =

∑
l f

k
i,l

For columns without frequencies we get:

cki,j =


(nk

i
2

)
for i = j

nki n
k
j for i 6= j

For our sequences we get the following table:

k II IL IV LL LV VV
1 0 0 0 1 4 1
2 1 4 0 1 0 0
3 0 1 2 0 2 1
4 1.25 1.5 2 0.25 1 0

3. Next we compute ci,j =
∑

k c
k
i,j and Z =

∑
i,j≤i ci,j = L N (N−1)

2 , where L is the
sequence length (number of columns) and N the number of clusters.
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c =

I L V
I 2.25 - -
L 6.5 2.25 -
V 4 7 2

Z = 4·4·3
2 = 24

4. Now the ci,j are normalized to obtain the probability qi,j =
ci,j
Z and we set qj,i = qi,j for

i > j.

q =

I L V
I 0.094 0.271 0.167
L 0.271 0.094 0.292
V 0.167 0.292 0.083

The probability of the occurrence of amino acid i is

qi = qi,i +
∑

j 6=i
qi,j
2 ,

the probability of i not being mutated plus the sum of the mutation probabilities.

qI = 0.3125
qL = 0.375
qV = 0.3125

5. The log-odds ratios are calculated using

log − odds ratios =


2 log2

qi,i
q2i

for i = j

2 log2
qi,j

2 qi qj
for i 6= j

log − odds ratios:

I L V
I -0.12 0.42 -0.46
L 0.42 -1.17 0.63
V -0.46 0.63 -0.46

6. To get the BLOSUM scoring matrix, these values need to be rounded to integers.

BLOSUM75 =

I L V
I 0 0 0
L 0 -1 1
V 0 1 0
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C.1.3 Global Alignment — Needleman-Wunsch

C.1.3.1 Linear Gap Penalty

Given the two sequences BAC and BABABC we want to compute all optimal global alignments
using the Needleman-Wunsch algorithm with linear gap penalty.
We use a score of 2 for a match and -1 for a mismatch. The gap penalty d = 2.

We align the first sequence (sequence x) vertically and the second sequence (sequence y) on top.
The initial score in the top left corner is set to 0. For initializing the rest of the first row and first
column, we have to substract the gap penalty from the score for each step to the right or down.
Arrows point at the element that was used for the computation.

Sij F B A B A B C
F 0 ← -2 ← -4 ← -6 ← -8 ← -10 ← -12

↑
B -2
↑

A -4
↑

C -6

Next we start filling the matrix row by row. For each element there are three possibilities to obtain
a score:

1. a gap in sequence x: this value is calculated by substracting the gap penalty from the score
of the element to the left, therefore it is marked by an arrow pointing to the left.

2. a gap in sequence y: this value is calculated by substracting the gap penalty from the score
of the element above, therefore it is marked by an upward arrow.

3. no gap: this value is calculated by adding the respective match or mismatch score to the
score of the element on the upper left diagonal and is therefore marked by a diagonal arrow.

We take the maximum of these three scores and use the respective arrow to mark how this value
was obtained. All arrows leading to the maximal score are stored in order to get all optimal global
alignments.

Sij F B A B A B C
F 0 ← -2 ← -4 ← -6 ← -8 ← -10 ← -12

↑ ↖ ↖ ↖
B -2 2 ← 0 ← -2 ← -4 ← -6 ← -8
↑

A -4
↑

C -6
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The calculations are continued row by row and lead to the following matrix:

Sij F B A B A B C
F 0 ← -2 ← -4 ← -6 ← -8 ← -10 ← -12

↑ ↖ ↖ ↖
B -2 2 ← 0 ← -2 ← -4 ← -6 ← -8
↑ ↑ ↖ ↖

A -4 0 4 ← 2 ← 0 ← -2 ← -4
↑ ↑ ↑ ↖ ↖ ↖ ↖

C -6 -2 2 3 ← 1 ← -1 0

The optimal score of the global alignment can be found in the bottom right corner. Using the
arrows we can backtrack the according alignments starting at that position.

Sij F B A B A B C
F 0 ← -2 ← -4 ← -6 ← -8 ← -10 ← -12

↑ ↖ ↖ ↖
B -2 2 ← 0 ← -2 ← -4 ← -6 ← -8
↑ ↑ ↖ ↖

A -4 0 4 ← 2 ← 0 ← -2 ← -4
↑ ↑ ↑ ↖ ↖ ↖ ↖

C -6 -2 2 3 ← 1 ← -1 0

Sij F B A B A B C
F 0 ← -2 ← -4 ← -6 ← -8 ← -10 ← -12

↑ ↖ ↖ ↖
B -2 2 ← 0 ← -2 ← -4 ← -6 ← -8
↑ ↑ ↖ ↖

A -4 0 4 ← 2 ← 0 ← -2 ← -4
↑ ↑ ↑ ↖ ↖ ↖ ↖

C -6 -2 2 3 ← 1 ← -1 0

Sij F B A B A B C
F 0 ← -2 ← -4 ← -6 ← -8 ← -10 ← -12

↑ ↖ ↖ ↖
B -2 2 ← 0 ← -2 ← -4 ← -6 ← -8
↑ ↑ ↖ ↖

A -4 0 4 ← 2 ← 0 ← -2 ← -4
↑ ↑ ↑ ↖ ↖ ↖ ↖

C -6 -2 2 3 ← 1 ← -1 0

We start by aligning the last character of the alignment and go backwards. At a diagonal arrow we
write the character of the current position of both sequences, an arrow pointing to the left creates
a gap in sequence x, and the upward arrow creates a gap in sequence y. Each fork creates a new
alignment, where we first copy the alignment we got so far. This leads to the following three
optimal alignments with a score of 0:
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Alignment 1:

↖ ↖ ← ← ← ↖
B A - - - C
B A B A B C

Alignment 2:

↖ ← ← ↖ ← ↖
B - - A - C
B A B A B C

Alignment 3:

← ← ↖ ↖ ← ↖
- - B A - C
B A B A B C
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C.1.3.2 Affine Gap Penalty

Given the two sequences BAC and BABABC we want to compute all optimal global alignments
using the Needleman-Wunsch algorithm with affine gap penalty.
We use the identity matrix as scoring matrix i.e. a scoring of 1 for matches and a scoring of 0 for
mismatches. The gap open penalty d = 2, whereas the gap extension penalty e = 1.

Again, we align the first sequence (sequence x) vertically and the second sequence (sequence y)
on top. This time we need three matrices:

Gd(i, j): best score up to position (i, j) and no gap at the end

Gx(i, j): best score up to position (i, j) with a gap in sequence x at position i

Gy(i, j): best score up to position (i, j) with a gap in sequence y at position j

In each of the matrices only one kind of step is possible, therefore we only have to look, whether
staying in the same matrix gives a higher score than coming from a different matrix. This means
that for the Gd matrix we have to look for the highest value in all three matrices whereas for the
other matrices we have to consider, whether we want to use the Gd score while introducing a new
gap (gap open penalty), or stay in the same matrix and extend the gap (gap extension penalty). We
have to remember that we do not want to have a gap in sequence x followed by a gap in sequence
y, or the other way around. Therefore we only need to consider matricesGd andGx for calculating
Gx and analogously Gd and Gy for calculating Gy.

The initial score in the top left corner of the Gd matrix is again set to 0. The remaining first row
and first column, as well as the first column of the Gx matrix and the first row of the Gy matrix
are initialized with −∞. The rest of the initialization is done using the 0 in the Gd and a gap open
penalty in the first step followed by gap extension penalties.

Gd F B A B A B C
F 0 −∞ −∞ −∞ −∞ −∞ −∞

B −∞

A −∞

C −∞

Gx F B A B A B C
F −∞ ←d -2 ←x -3 ←x -4 ←x -5 ←x -6 ←x -7

B −∞

A −∞

C −∞
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Gy F B A B A B C
F −∞ −∞ −∞ −∞ −∞ −∞ −∞

↑d
B -2

↑y
A -3

↑y
C -4

Next we start filling the second row of all three matrices. This time we need to store which matrix
was used to calculate the best score. Again, it is possible to store more than one matrix symbol if
needed.

Gd F B A B A B C
F 0 −∞ −∞ −∞ −∞ −∞ −∞

↖d ↖x ↖x ↖x ↖x ↖x

B −∞ 1 -2 -2 -4 -4 -6

A −∞

C −∞

Gx F B A B A B C
F −∞ ←d -2 ←x -3 ←x -4 ←x -5 ←x -6 ←x -7

B −∞ −∞ ←d -1 ←x -2 ←x -3 ←x -4 ←x -5

A −∞

C −∞

Gy F B A B A B C
F −∞ −∞ −∞ −∞ −∞ −∞ −∞

↑d
B -2 −∞ −∞ −∞ −∞ −∞ −∞

↑y
A -3

↑y
C -4
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The calculations are continued row by row and lead to the following matrices:

Gd F B A B A B C
F 0 −∞ −∞ −∞ −∞ −∞ −∞

↖d ↖x ↖x ↖x ↖x ↖x

B −∞ 1 -2 -2 -4 -4 -6
↖y ↖d ↖x ↖d,x ↖x ↖d,x

A −∞ -2 2 -1 -1 -3 -4
↖y ↖y ↖d ↖x ↖d,x ↖x

C −∞ -3 -1 2 0 -1 -1

Gx F B A B A B C
F −∞ ←d -2 ←x -3 ←x -4 ←x -5 ←x -6 ←x -7

B −∞ −∞ ←d -1 ←x -2 ←x -3 ←x -4 ←x -5

A −∞ −∞ ←d -4 ←d 0 ←x -1 ←x -2 ←x -3

C −∞ −∞ ←d -5 ←d -3 ←d 0 ←x -1 ←x -2

Gy F B A B A B C
F −∞ −∞ −∞ −∞ −∞ −∞ −∞

↑d
B -2 −∞ −∞ −∞ −∞ −∞ −∞

↑y ↑d ↑d ↑d ↑d ↑d ↑d
A -3 -1 -4 -4 -6 -6 -8

↑y ↑y ↑d ↑d ↑d ↑d ↑d
C -4 -2 0 -3 -3 -5 -6

The optimal score of the global alignment is the maximum of the scores in the bottom right corner
of all three matrices. This is where the backtracking starts. Again, we use the arrows to backtrack
the according alignments and change matrices according to the stored symbols.

Gd F B A B A B C
F 0 −∞ −∞ −∞ −∞ −∞ −∞

↖d ↖x ↖x ↖x ↖x ↖x

B −∞ 1 -2 -2 -4 -4 -6
↖y ↖d ↖x ↖d,x ↖x ↖d,x

A −∞ -2 2 -1 -1 -3 -4
↖y ↖y ↖d ↖x ↖d,x ↖x

C −∞ -3 -1 2 0 -1 -1
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Gx F B A B A B C
F −∞ ←d -2 ←x -3 ←x -4 ←x -5 ←x -6 ←x -7

B −∞ −∞ ←d -1 ←x -2 ←x -3 ←x -4 ←x -5

A −∞ −∞ ←d -4 ←d 0 ←x -1 ←x -2 ←x -3

C −∞ −∞ ←d -5 ←d -3 ←d 0 ←x -1 ←x -2

Gy F B A B A B C
F −∞ −∞ −∞ −∞ −∞ −∞ −∞

↑d
B -2 −∞ −∞ −∞ −∞ −∞ −∞

↑y ↑d ↑d ↑d ↑d ↑d ↑d
A -3 -1 -4 -4 -6 -6 -8

↑y ↑y ↑d ↑d ↑d ↑d ↑d
C -4 -2 0 -3 -3 -5 -6

In our example the optimal score is -1 and the alignment ends without a gap because the maximum
is found in the Gd matrix. We again start with the last characters of the alignment and go back. As
above, we write the character of the current position of both sequences at a diagonal arrow (a step
in the Gd matrix), an arrow pointing to the left (a step in the Gx matrix) creates a gap in sequence
x, and the upward arrow (a step in the Gy matrix) creates a gap in sequence y. After each step we
look whether we need to change the matrix according to the symbols above the arrows. If there is
more than one symbol, we start a new alignment, where we first copy the alignment we got so far.

This gives one optimal alignment for our example:

↖d ↖d ←d ←x ←x ↖x

B A - - - C
B A B A B C
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C.1.4 Local Alignment — Smith-Waterman

C.1.4.1 Linear Gap Penalty

Given the two sequences CGAC and CGTTACT we want to compute all optimal local alignments
using the Smith-Waterman algorithm with linear gap penalty. We use a score of 2 for a match and
-1 for a mismatch. The gap penalty d = 2.

We align the first sequence (sequence x) vertically and the second sequence (sequence y) on top.
In contrast to the Needleman-Wunsch algorithm, negative entries in the matrix are set to 0, where
we mark the 0 with a star to distinguish it from a "normal" 0.

Sij F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗

G 0∗

A 0∗

C 0∗

Next we start filling the matrix row by row. For each element there are three possibilities to obtain
a score:

1. a gap in sequence x: this value is calculated by substracting the gap penalty from the score
of the element to the left, therefore it is marked by an arrow pointing to the left.

2. a gap in sequence y: this value is calculated by substracting the gap penalty from the score
of the element above, therefore it is marked by an upward arrow.

3. no gap: this value is calculated by adding the respective match or mismatch score to the
score of the element on the upper left diagonal and is therefore marked by a diagonal arrow.

We take the maximum of these three scores and use the respective arrow to mark how this value
was obtained. All arrows leading to the maximal score are stored in order to get all optimal local
alignments. If the maximal score is negative, it is set to 0∗ and no arrow is needed.

Sij F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖ ↖
C 0∗ 2 ← 0 0∗ 0∗ 0∗ 2 ← 0

G 0∗

A 0∗

C 0∗
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The calculations are continued row by row and lead to the following matrix:

Sij F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖ ↖
C 0∗ 2 ← 0 0∗ 0∗ 0∗ 2 ← 0

↑ ↖ ↑ ↖
G 0∗ 0 4 ← 2 ← 0 0∗ 0 1

↑ ↖ ↖ ↖
A 0∗ 0∗ 2 3 ← 1 2 ← 0 0∗

↖ ↑ ↖ ↑ ↖ ↖ ↑ ↖
C 0∗ 2 ← 0 1 2 ← 0 4 ← 2

The optimal score of the local alignment is the maximal score found in the matrix. Using the
arrows we can backtrack the according alignments starting at this position. If multiple entries
have the same maximal score, each of them constitutes a new starting point.

Similar to the global alignment, we start by aligning the last character of the alignment and go
backwards. At a diagonal arrow we write the character of the current position of both sequences,
an arrow pointing to the left creates a gap in sequence x, and the upward arrow creates a gap in
sequence y. Again, each fork creates a new alignment, where we first copy the alignment we got
so far. The 0∗ serves as a stop sign and therefore terminates the alignment. The "normal" 0 leads
to two different alignments: one uses the 0 as a stop sign, the other continues the alignment.

The following three optimal alignments achieve a score of 4:

Sij F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖ ↖
C 0∗ 2 ← 0 0∗ 0∗ 0∗ 2 ← 0

↑ ↖ ↑ ↖
G 0∗ 0 4 ← 2 ← 0 0∗ 0 1

↑ ↖ ↖ ↖
A 0∗ 0∗ 2 3 ← 1 2 ← 0 0∗

↖ ↑ ↖ ↑ ↖ ↖ ↑ ↖
C 0∗ 2 ← 0 1 2 ← 0 4 ← 2

Sij F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖ ↖
C 0∗ 2 ← 0 0∗ 0∗ 0∗ 2 ← 0

↑ ↖ ↑ ↖
G 0∗ 0 4 ← 2 ← 0 0∗ 0 1

↑ ↖ ↖ ↖
A 0∗ 0∗ 2 3 ← 1 2 ← 0 0∗

↖ ↑ ↖ ↑ ↖ ↖ ↑ ↖
C 0∗ 2 ← 0 1 2 ← 0 4 ← 2
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Sij F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖ ↖
C 0∗ 2 ← 0 0∗ 0∗ 0∗ 2 ← 0

↑ ↖ ↑ ↖
G 0∗ 0 4 ← 2 ← 0 0∗ 0 1

↑ ↖ ↖ ↖
A 0∗ 0∗ 2 3 ← 1 2 ← 0 0∗

↖ ↑ ↖ ↑ ↖ ↖ ↑ ↖
C 0∗ 2 ← 0 1 2 ← 0 4 ← 2

Alignment 1:

↖ ↖
A C
A C

Alignment 2:

↖ ↖ ← ← ↖ ↖
C G - - A C
C G T T A C

Alignment 3:

↖ ↖
C G
C G
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C.1.4.2 Affine Gap Penalty

Given the two sequences CGAC and CGTTACT we want to compute all optimal local alignments
using the Smith-Waterman algorithm with affine gap penalty.
We use a score of 2 for a match and -1 for a mismatch. The gap open penalty d = 2, whereas the
gap extension penalty e = 1.

Again, we align the first sequence (sequence x) vertically and the second sequence (sequence y)
on top. This time we need three matrices:

Gd(i, j): best score up to position (i, j) and no gap at the end

Gx(i, j): best score up to position (i, j) with a gap in sequence x at position i

Gy(i, j): best score up to position (i, j) with a gap in sequence y at position j

In each of the matrices only one kind of step is possible, therefore we only have to look, whether
staying in the same matrix gives a higher score than coming from a different matrix. This means
that for the Gd matrix we have to look for the highest value in all three matrices whereas for the
other matrices we have to consider, whether we want to use the Gd score while introducing a new
gap (gap open penalty), or stay in the same matrix and extend the gap (gap extension penalty). We
have to remember that we do not want to have a gap in sequence x followed by a gap in sequence
y, or the other way around. Therefore we only need to consider matricesGd andGx for calculating
Gx and analogously Gd and Gy for calculating Gy.

Again, all negative values are replaced by 0∗. Therefore, all three matrices are initialized with 0∗.

Gd F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗

G 0∗

A 0∗

C 0∗

Gx F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗

G 0∗

A 0∗

C 0∗
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Gy F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗

G 0∗

A 0∗

C 0∗

Next we start filling the second row of all three matrices. Again, we need to store which matrices
were used to calculate the best score.

Gd F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖d,x,y ↖d,x,y

C 0∗ 2 0∗ 0∗ 0∗ 0∗ 2 0∗

G 0∗

A 0∗

C 0∗

Gx F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗ 0∗ ←d 0 0∗ 0∗ 0∗ 0∗ ←d 0

G 0∗

A 0∗

C 0∗

Gy F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

G 0∗

A 0∗

C 0∗
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The calculations are continued row by row and lead to the following matrices:

Gd F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖d,x,y ↖d,x,y

C 0∗ 2 0∗ 0∗ 0∗ 0∗ 2 0∗

↖d ↖d

G 0∗ 0∗ 4 0∗ 0∗ 0∗ 0∗ 1
↖d ↖x ↖x

A 0∗ 0∗ 0∗ 3 1 3 0∗ 0∗

↖d,x,y ↖y ↖d ↖d,x ↖d ↖x

C 0∗ 2 0∗ 1 2 0 5 0

Gx F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗ 0∗ ←d 0 0∗ 0∗ 0∗ 0∗ ←d 0

G 0∗ 0∗ 0∗ ←d 2 ←x 1 ←x 0 0∗ 0∗

A 0∗ 0∗ 0∗ 0∗ ←d 1 ←x 0 ←d 1 ←x 0

C 0∗ 0∗ ←d 0 0∗ 0∗ ←d 0 0∗ ←d 3

Gy F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↑d ↑d
G 0∗ 0 0∗ 0∗ 0∗ 0∗ 0 0∗

↑d
A 0∗ 0∗ 2 0∗ 0∗ 0∗ 0∗ 0∗

↑y ↑d ↑d
C 0∗ 0∗ 1 1 0∗ 1 0∗ 0∗

The optimal score of the local alignment is the maximal entry of all three matrices. This is where
the backtracking starts. Again, we use the arrows to backtrack the according alignments and
change matrices according to the stored symbols. If multiple entries have the same maximal
score, each of them constitutes a new starting point.

In our example the optimal score is 5 and the alignment ends without a gap since a gap at the end
would decrease the score.
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Gd F C G T T A C T
F 0 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↖d,x,y ↖d,x,y

C 0∗ 2 0∗ 0∗ 0∗ 0∗ 2 0∗

↖d ↖d

G 0∗ 0∗ 4 0∗ 0∗ 0∗ 0∗ 1
↖d ↖x ↖x

A 0∗ 0∗ 0∗ 3 1 3 0∗ 0∗

↖d,x,y ↖y ↖d ↖d,x ↖d ↖x

C 0∗ 2 0∗ 1 2 0 5 0

Gx F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗ 0∗ ←d 0 0∗ 0∗ 0∗ 0∗ ←d 0

G 0∗ 0∗ 0∗ ←d 2 ←x 1 ←x 0 0∗ 0∗

A 0∗ 0∗ 0∗ 0∗ ←d 1 ←x 0 ←d 1 ←x 0

C 0∗ 0∗ ←d 0 0∗ 0∗ ←d 0 0∗ ←d 3

Gy F C G T T A C T
F 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

C 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗ 0∗

↑d ↑d
G 0∗ 0 0∗ 0∗ 0∗ 0∗ 0 0∗

↑d
A 0∗ 0∗ 2 0∗ 0∗ 0∗ 0∗ 0∗

↑y ↑d ↑d
C 0∗ 0∗ 1 1 0∗ 1 0∗ 0∗

We start by aligning the last character of the alignment and work backwards. Again, we write the
character of the current position of both sequences at a diagonal arrow (a step in the Gd matrix),
an arrow pointing to the left (a step in the Gx matrix) creates a gap in sequence x, and the upward
arrow (a step in the Gy matrix) creates a gap in sequence y. After each step we look whether
we need to change the matrix according to the symbols above the arrows. If there is more than
one symbol, we start a new alignment, where we first copy the alignment we got so far. The 0∗

serves as a stop sign and therefore terminates the alignment. The "normal" 0 leads to two different
alignments: one uses the 0 as a stop sign, the other continues the alignment.

In our example we have one optimal alignment:

↖ ↖d ←d ←x ↖x ↖d

C G - - A C
C G T T A C
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C.2 Phylogenetics

C.2.1 UPGMA

Initially, each sequence i is a cluster ci with one element (ni = 1). The height li of each cluster is
zero.
For a given set of sequences from A to E we get the following list of clusters with the respective
sizes N :

Clusters(0) = ({A},{B},{C},{D},{E})
N (0) = (1, 1, 1, 1, 1)

We start with the following pairwise distances obtained by pairwise alignment:

Distances(0) :

A B C D E
A 0 - - - -
B 0.012 0 - - -
C 0.043 0.042 0 - -
D 0.038 0.033 0.037 0 -
E 0.095 0.092 0.097 0.093 0

Now we repeat the following steps until the list contains only one element:

1. Select cluster pair (i, j) from the list with minimal distance Dij and create a new cluster
ck by joining ci and cj . Assign the height lk = Dij/2 and the number of elements
nk = ni + nj .

2. Compute the distances for the new cluster ck to all other clusters cm:
Dkm =

ni Dmi + nj Dmj

ni + nj
.

The formula ensures that Dkm is the average distance between all elements in ck and cm.

3. Remove i and j from the list and add k to the list.

In our example the smallest distance is between clusters {A} and {B}. We join these clusters to a
new cluster {A, B} with nAB = 1 + 1 = 2 and lAB = 0.012/2 = 0.006.
We get:

Clusters(1) = ({A, B},{C},{D},{E})
N (1) = (2, 1, 1, 1)

The new distances are:

Distances(1) :

AB C D E
AB 0 - - -
C 0.0425 0 - -
D 0.0355 0.037 0 -
E 0.0935 0.097 0.093 0

E.g.: The distance between clusters {A ,B} and {C} is calculated usingDAB,C = 1·0.043 + 1·0.042
1 + 1 .
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Now we look again for the smallest distance and therefore, join clusters {A, B} and {D} to cluster
{A, B, D} with height lABD = 0.0355/2 = 0.01775.

We get:

Clusters(2) = ({A, B, D},{C},{E})
N (2) = (3, 1, 1)

The new distances are:

Distances(2) :

ABD C E
ABD 0 - -

C 0.0406 0 -
E 0.093 0.097 0

E.g.: The distance between clusters {A, B, D} and {C} is calculated usingDABD,C = 2·0.0425 + 1·0.037
2 + 1 .

Now the smallest distance leads to joining of clusters {A, B, D} and {C} to cluster {A, B, C, D}
with height lABCD = 0.0406/2 = 0.0203.

We get:

Clusters(3) = ({A, B, C, D},{E})
N (3) = (4, 1)

The new distances are:

Distances(3) :
ABCD E

ABCD 0 -
E 0.094 0

E.g.: The distance between clusters {A, B, C, D} and {E} is calculated using DABCD,E =
3·0.093 + 1·0.097

3 + 1 .

The next step is trivial. The remaining clusters are joined to one large cluster and the algorithm
terminates:

Clusters(4) = ({A, B, C, D, E})
N (4) = (5)

lABCDE = 0.094/2 = 0.047.

The phylogenetic tree is constructed using the joining order and the calculated height values.
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Figure C.2: Phylogenetic tree constructed by UPGMA.
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C.2.2 Neighbor Joining

The neighbor joining algorithm works as follows:

Given the pairwise distances Dij , start with a star tree (the taxa are the leaves) and put all taxa in
a set of objects.

Figure C.3: Initial star tree for neighbor joining.

1. For each leaf i compute

ri =
∑N

k=1Dik,

where N is the number of objects in the set.

2. For each pair of leaves (i, j) compute

Qij = (N − 2) Dij − ri − rj .

3. Determine the minimal Qij . Join the according leaves i and j to a new leaf u.

Compute branch lengths

liu =
Dij

2 +
ri − rj
2(N−2) and

lju = Dij − liu.

Compute new distances of u:

Dku =
Dik + Djk − Dij

2 .

Delete i and j from the set of objects. Add u to the set of objects. Stop if the set of objects
contains only two objects, otherwise go to Step 1.

4. Connect the last two objects by using lij = Dij .

Again, we start with the following pairwise distances obtained by pairwise alignment:

D(0) :

A B C D E
A 0 - - - -
B 0.012 0 - - -
C 0.043 0.042 0 - -
D 0.038 0.033 0.037 0 -
E 0.095 0.092 0.097 0.093 0
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1.1: At the beginning N = 5. Therefore, we have to compute the following five ri values:
rA = 0.012 + 0.043 + 0.038 + 0.095 = 0.188
rB = 0.012 + 0.042 + 0.033 + 0.092 = 0.179
rC = 0.043 + 0.042 + 0.037 + 0.097 = 0.219
rD = 0.038 + 0.033 + 0.037 + 0.093 = 0.201
rE = 0.095 + 0.092 + 0.097 + 0.093 = 0.377

1.2: Q(0) :

A B C D E
A - - - - -
B -0.331 - - - -
C -0.278 -0.272 - - -
D -0.275 -0.281 -0.309 - -
E -0.280 -0.280 -0.305 -0.299 -

E.g.: QAB = (5− 2) · 0.012 − 0.188 − 0.179 = −0.331

1.3: The smallest Qij is -0.331 therefore leaves A and B are joined to leaf U1.
The branch lengths are: lAU1 = 0.012

2 + 0.188 − 0.179
2(5−2) = 0.0075 and

lBU1 = 0.012 − 0.0075 = 0.0045.

Figure C.4: First join of neighbor joining. Leaves A and B are joined to leaf U1.

The new distances are:

D(1) :

U1 C D E
U1 0 - - -
C 0.0365 0 - -
D 0.0295 0.037 0 -
E 0.0875 0.097 0.093 0

E.g.: DCU1 = 0.043 + 0.042 − 0.012
2 = 0.0365

2.1: Since we removed leaves A and B and only added one leaf, U1, we have now N = 4.
rU1 = 0.0365 + 0.0295 + 0.0875 = 0.1535
rC = 0.0365 + 0.037 + 0.097 = 0.1705
rD = 0.0295 + 0.037 + 0.093 = 0.1595
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rE = 0.0875 + 0.097 + 0.093 = 0.2775

2.2: Q(1) :

U1 C D E
U1 - - - -
C -0.251 - - -
D -0.254 -0.256 - -
E -0.256 -0.254 -0.251 -

E.g.: QU1C = (4− 2) · 0.0365 − 0.1535 − 0.1705 = −0.251

2.3: The minimal Qij is -0.256 for pairs U1E and CD. We have to choose one pair and
therefore join leaves C and D to leaf U2.

The branch lengths are: lCU2 = 0.037
2 + 0.1705 − 0.1595

2(4−2) = 0.02125 and

lDU2 = 0.037 − 0.02125 = 0.01575.

Figure C.5: Second join of neighbor joining. Leaves C and D are joined to leaf U2.

The new distances are:

D(2) :

U1 U2 E
U1 0 - -
U2 0.0145 0 -
E 0.0875 0.0765 0

3.1: N = 3, which means we have to compute three ri values:

rU1 = 0.0145 + 0.0875 = 0.102
rU2 = 0.0145 + 0.0765 = 0.091
rE = 0.0875 + 0.0765 = 0.164
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3.2: Q(2) :

U1 U2 E
U1 - - -
U2 -0.1785 - -
E -0.1785 -0.1785 -

E.g.: QU1U2 = (3− 2) · 0.0145 − 0.102 − 0.091 = −0.1785

3.3: Since all Qij are the same we can choose one pair and join leaves U1 and E to leaf U3.
The branch lengths are: lU1U3 = 0.0875

2 + 0.102 − 0.164
2(3−2) = 0.01275 and

lEU3 = 0.0875 − 0.01275 = 0.07475.

Figure C.6: Third join of neighbor joining. Leaves U1 and E are joined to leaf U3.

The new distances are:

D(3) :
U2 U3

U2 0 -
U3 0.00175 0
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4. The last branch length is equal to the distance between U2 and U3 and therefore 0.00175.

Figure C.7: Phylogenetic tree built by neighbor joining.
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